Language Resource Addition: Dictionary or Corpus?

Shinsuke Mori Graham Neubig

Kyoto University

NAIST

2014 May 29

Table of Contents

Overview

Morphological Analysis

Evaluation

Realistic Cases

Conclusion

NLP for Applications

- ► Machine learning approach
 - 1. Annotation standard
 - 2. Language resource (Texts with annotations)
 - 3. Classifiers
- ▶ High accuracy in the general domain
 - We have enough large annotated data
- Not sufficiently accurate for various texts
 - Achieve a high accuracy by all means!!

Language Resource Addition for ML-based NLP

Language resource addition never betrays!!

- ► As dictionary entries
 - ▶ Without context ⇒ Improve NLP
 - ► Easy for tool users : You just edit the dictionary.
- As an annotated corpus
 - ► Not easy for tool users : You need re-training.
 - ► With context ⇒ Improve more?

Task for Experiments

▶ Japanese morphological analysis = WS + PT

► Most ambiguity lies in WS

Sequence-based Approach (SB)

▶ MeCab: CRF-based joint method [Kudo 04]

- ightharpoonup refers to the word to be tagged w, the word sequences to its left w_- and right w_+ , and their POS
- requires fully annotated language resources

Cf. [Tsuboi 08]

Pointwise Approach (PW)

- ► KyTea: 2-step pointwise method (SVM or other) [Neubig 11]
 - ▶ Word segmentation ⇒ POS tagging

- ▶ refers to only the word to be tagged w, and the character sequences to its left c_- and right c_+
- never refers to any estimated values!
- ▶ is trainable from partially annotated language resources

Pointwise Approach (PW)

- ► KyTea: 2-step pointwise method (SVM or other) [Neubig 11]
 - ▶ Word segmentation ⇒ POS tagging

- ▶ refers to only the word to be tagged w, and the character sequences to its left c_- and right c_+
- never refers to any estimated values!
- ▶ is trainable from partially annotated language resources

Dictionary or Corpus

```
Dictionary
  word1/POS1,POS2
  word2/POS2,POS3
Corpus
left context
            word1/POS1
                          right context
            word1/POS2
                          right context
left context
left context word2/POS2
                          right context
left context
            word2/POS3
                          right context
```

► Unknown words are found in real texts with contexts

Experimental Setting

1. BCCWJ (Balanced Corpus of Contemporary Written Japanese) [Maekawa 08]

Corpus				
Domain	#words			
General	784k	(Core Data - Yahoo!QA)		
General + Web	898k	(Core Data)		
Web for test	13.0k			
Dictionary				
Domain	#words	Coverage (word/POS)		
General	29.7k	96.3%		
General + Web	32.5k	97.9%		

MA and method

- ► Morphological analyzer
 - 1. MeCab: CRF-based joint method [Kudo 04]
 - 2. KyTea: 2-step pointwise method [Neubig 11]
- Adaptation strategies
 - 1. No adaptation: Use the corpus and the dictionary in the general domain.
 - 2. Dictionary addition (no re-training): Add words appearing in the Web training corpus to the dictionary (MeCab only).
 - **3.** Dictionary addition (re-training): + estimate the weights on the general domain training data.
 - **4.** Corpus addition: Add annotated sentences in the Web training corpus and train the parameters.

Accuracy Mesurement

- $ightharpoonup N_{REF}$: the number of word-POS pairs in the correct sentence
- ▶ N_{SYS} : in the system output
- $lacktriangleright N_{LCS}$: the length of the LCS (longuest common subsequence)

$$\text{Recall} = \frac{N_{LCS}}{N_{REF}}, \quad \text{Prec.} = \frac{N_{LCS}}{N_{SYS}}.$$

► F-measure: the harmonic mean of the Recall and the Prec.

$$F = \left\{ \frac{1}{2} (R^{-1} + P^{-1}) \right\}^{-1} = \frac{2N_{LCS}}{N_{REF} + N_{SYS}}.$$

Word Segmentation Accuracy

Adaptation strategy	MeCab	
No adaptation	95.20%	95.54%
Dict. addition (no re-training)	96.59%	-
Dict. addition (re-training)	96.55%	
Corpus addition	96.85%	97.15%

- ▶ Dictionary addition: +1.35% (MeCab), +1.21% (KyTea)
- ► Corpus addition: +0.30% (MeCab), +0.40% (KyTea)

Realistic Cases

- ▶ The previous experiments are somewhat artificial or *in-vitro*
 - ► Full annotation required

- ► Two real adaptation scenarios or *in-vivo*
 - ► Partial annotation

```
ex.) 吾輩は 猫/N である
no annot. no annot.
```

- Only KyTea (MeCab does not support such data)
- ▶ focusing on word segmentation where most ambiguity lies

Case 1: Recipe Text Analysis

for Procedural Text Understanding

► Recipe flow graph corpus [Mori 14] (05/29 Session: P34 - Corpora and Annotation)

► Specifications

	#Sent.	#NEs	#Words	#Char.
Training	1,760	13,197	33,088	50,002
Test	724	_	13,147	19,975

Recipe flow graph corpus

- "Meaning representation" of cooking instructions
- ► Important terms for cooking (recipe NEs) are annotated with types and correctly segmented into words

Three Adaptation Methods (1/2)

- 1. No Adapation
- 2. Dictionary: Use the training data as a dictionary.
 - 2.1 Extract recipe NEs from the training data,

```
ex.) /ホット ドッグ/F, /チリ/F, /チーズ/F, /オニオン/F, /ふりかけ/Ac, /ホット ドッグ/F, /アルミ ホイル/F, /覆/Ac
```

- 2.2 Make a dictionary containing the words in these NEs,
 - ex.) <mark>ホット、ドッグ</mark>、チリ、チーズ、オニオン、 ふりかけ、アルミ、ホイル、覆
- **2.3** Use the dictionary as the additional language resource to train the model.

Three Adaptation Methods (2/2)

- 3. Corpus: Use the training data as partial annotation
 - 1. Extract n occurrences at maximum of the recipe NEs

```
各 /ホットドッグ/F に チリ 、チーズ 、 (each) (hot dog) (cmi) (chili) , cheese , オニオン を ふりかけ る onion (cmd) (sprinkle) (infl.) /ホットドッグ/F を アルミホイル で 覆 う (bot) (bot) (bot) (bot) (bot) (cover) (infl.)
```

- 2. Convert them into partially segmented sentences
 - ▶ both edges and the inside of the NEs are annotated with word boundary information.

- ► "|": boundary, "-": not boundary, "\(_\)": no information
- 3. Train the model with this partially annotated data

Word Segmentation Accuracy

Strategy	#occurrences		#words	WS F-measure	
	max.(n)	average		BCCWJ	Recipe
No adaptation	_	_	0	98.87%	94.35%
Dictionary	_	_	1,999	98.90%	94.54%
	1	1.00	1,999	98.89%	95.56%
	2	1.60	3,191	98.89%	95.81%
	3	2.02	4,046	98.89%	95.94%
Corpus	4	2.36	4,727	98.89%	96.01%
(partial	8	3.26	6,523	98.89%	96.07%
annotation)	16	4.26	8,512	98.89%	96.14%
	32	5.10	10,203	98.89%	96.21%
	64	5.77	11,542	98.89%	96.28%
	∞	6.60	13,197	98.89%	96.29%

- ▶ Partial annotation is better than dictionary addition
- ▶ The degree of improvement shrinks as \vec{n} increases.

Case 2: Patent Text Analysis

for Machine Translation

 $KWIC \Rightarrow Distributional Analysis \Rightarrow Partial annotation -$

"嵌合" (Freq = 49)

- 1. こ」れ」ら | 嵌-合 | 用」ロ」ッ」ク
- 2. 7 」 c 」が | 嵌-合| 方」向」に」向
- 3. 自」在」に | 嵌-合| す」る」回」転
- 1. Extract unknown word candidates based on the distributional similarity from a raw corpus in the target domain [Mori 96]
- 2. Sort them in the descending order of the expected frequencies
- 3. Annotate three occurrences with word boundary information
- $\mbox{\%}$ In the beginning, $4 \leq n \leq 8$ in the case 1 result

Invention Disclosure Corpus

► Corpus specifications

	#Sent.	#Words	#Char.
Raw	31,862	_	2,018,082
Test	500	20,658	32,139

- 1. One hour annotation
- 2. Word segmentation model estimation
- 3. Accuracy measurement
- **4.** Goto 1.

Result

- ▶ The accuracy gets higher as we add partial annotations.
- ▶ 12 hours of annotation eliminated 20% of the errors.
- ► The final F-measure is as high as the general domain.
- ► We can improve more by only more annotator's work.

Conclusion

- ► Corpus > Dictionary
 - Context information
 - ► Three occurences in vivo
- ▶ Never throw away the context when you find an unknown word
- ▶ NLP trainable from partial annotations
 - Allows to focus on unknown (or important) words
 - ▶ Must be as accurate as the state-of-the-art NLP

Take Home Message

▶ Optimize the entire process with a flexible analyzer

References

- Kudo, T., Yamamoto, K., and Matsumoto, Y.: Applying Conditional Random Fields to Japanese Morphological Analysis, in Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 230–237 (2004)
- Maekawa, K.: Balanced Corpus of Contemporary Written Japanese, in *Proceedings of the 6th Workshop on Asian Language Resources*, pp. 101–102 (2008)
- Mori, S. and Nagao, M.: Word Extraction from Corpora and Its Part-of-Speech Estimation Using Distributional Analysis, in Proceedings of the 16th International Conference on Computational Linguistics (1996)

- Mori, S., Maeta, H., Yamakata, Y., and Sasada, T.: Flow Graph Corpus from Recipe Texts, in *Proceedings of the Nineth International Conference on Language Resources and Evaluation* (2014)
- Neubig, G., Nakata, Y., and Mori, S.: Pointwise Prediction for Robust, Adaptable Japanese Morphological Analysis, in *Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics* (2011)
- Tsuboi, Y., Kashima, H., Mori, S., Oda, H., and Matsumoto, Y.: Training Conditional Random Fields Using Incomplete Annotations, in *Proceedings of the 22th International Conference on Computational Linguistics* (2008)