Can Symbol Grounding Improve Low-Level NLP?
Word Segmentation as a Case Study
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Symbol Grounding for Text Associated with Multi-Modal Information
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Method: Automatic Term-Dictionary Generation
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Domain adaptation for word segmentation
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1. pseudo-Stochastically Segmented Corpora [Mori and Takuma, 2004]

ppi - probability of boundary (by baseline segmenter)
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Stochastically Segmented Corpora include probable candidate words
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generating deterministically segmented corpora
(in this experiment, 4 times)
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3. Dictionary Generation
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In this experiment, N = 127
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Corpus specifications Accuracy on Shogi commentaries
BCCWJ 56,753 1,324,951 1,911,660 Baseline 90.12
Training Newspaper glod 240,09/ 361,843 + Sym. Gro. 90.60
Conversation 11,700 147,809  19/,941
Development Shogi-dev 170 2501 3340 Accuracy on BCCWJ
Tact BCCWJ-test 0,025 148,929 212,261
Shogi-test 3,299 24,966 32,481 Baseline 98.99
+ Sym. Gro. 99.03
Conclusion

Symbol grounding can improve word segmentation
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Future Work

0 apply our approach to other tasks
To deal with other types of non-textual information
» e.g.) Images, economic indices




