
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Structure-Aware Procedural Text
Generation from an Image Sequence
TAICHI NISHIMURA 1, ATSUSHI HASHIMOTO 2 (Member, IEEE), YOSHITAKA USHIKU 2

(Member, IEEE), HIROTAKA KAMEKO 3, YOKO YAMAKATA 4 (Member, IEEE), and
SHINSUKE MORI3
1Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
2OMRON SINIC X Corporation, Tokyo 113-0033, Japan
3Academic Center for Computing and Media Studies, Kyoto University, Kyoto 606-8501, Japan
4Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan

Corresponding author: Taichi Nishimura (e-mail: nishimura.taichi.43x@st.kyoto-u.ac.jp).

ABSTRACT It is an important activity for our society to create new value by combining materials. From
daily cooking to industrial manufacturing, procedural texts describe the way to do it allowing readers
to reproduce procedures for these activities. As pointed by some previous studies for natural language
understanding, one important property of the procedural text is its context dependency, which is the merging
operations of materials and can be represented by a graph or tree structure. This paper aims to investigate
the impact of explicitly introducing such a structure on the vision and language task of procedural text
generation from an image sequence. To this end, we propose (1) a new dataset, which extends a definition
of a tree structure merging tree to a vision and language version and (2) a novel structure-aware procedural
text generation model, which learns the context dependency efficiently. Experimental results show that the
proposed method can boost the performance of traditional versatile methods.

INDEX TERMS Natural language processing, text generation, procedural text, vision and language

I. INTRODUCTION

An archive of procedural texts, which have been written in
the same abstraction level to human understanding, is an
accumulation of wisdom in our practice. It is an ambitious
challenge to obtain such an abstract representation of prac-
tical knowledge from low-level visual observation. As one
of the tasks to this goal, procedural text generation from
an image sequence [1], [2] has been proposed to investi-
gate machine’s capabilities in human-like understanding of
instructional visual stories. This task is rising in popularity
due to its goal-oriented property; the models must generate
coherent sentences.

To generate coherent sentences, we assume that the model
must preserve context dependency, which is the global de-
pendency of actions and involved materials to a single final
product. Previous work to generate a procedural text from an
image sequence [1], [2] thoroughly focused on representing
the global context in an image sequence, but it is not yet
reached in capturing the context dependency explicitly. In
terms of natural language understanding, some studies have
represented the context dependency of a procedural text as
a graph or tree structure [3]–[5], which leads the models to

reason about the path to the goal.

Inspired by these ideas, we aim to represent the context
dependency in an image sequence as a structure and intro-
duce it into the text generation models explicitly, allowing
the models to generate coherent sentences. To this end, we
propose (1) a new dataset, which extends the above proposed
structure definition to a vision and language version and (2)
a novel structure-aware procedural text generation model,
which learns the context dependency efficiently.

Among the structure definitions proposed in previous stud-
ies, we refer to the Simplified Ingredient Merging Map in
Recipes (SIMMR) dataset [3], which consists of procedural
texts (recipes) and its structure, a “merging tree.” A merging
tree is a tree structure describing the path through which
materials are merged into a single final product. We adopt
this structure because it is minimal but can fully express the
context dependency for a procedural text generation task. As
mentioned above, SIMMR is annotated to a dataset without
visual data. Thus, to provide a vision and language version,
we extend SIMMR to a new dataset called visual SIMMR
(vSIMMR), where each merging tree is annotated to an
image sequence in a subset of the traditional world-largest
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dataset1.
Using this dataset, we propose a structure-aware procedu-

ral text generation model that gains the global coherency by
explicitly predicting a merging tree. Additionally, based on
the intuition that the content of the instructions should be
identical regardless of the representation modality, we add a
tree re-prediction module to facilitate the generated procedu-
ral texts to be more coherent by preserving the merging tree
structure.

We tested the proposed method on the task of generating
cooking recipes using a variety of traditional procedural text
generation models. The experimental results show that the
proposed method can lead the base models to generate more
coherent recipes in a versatile manner. Human evaluation and
qualitative analysis support the impact of an increase in the
metrics from the perspective of the human senses.

II. RELATED WORK
We discuss the proposed vSIMMR dataset by comparing
with other datasets in II-A and II-B. We also show the novelty
of the proposed method, introducing the other procedural text
generation models in II-C.

A. HOW-TO DATASETS FOR VISION AND LANGUAGE
How-to datasets consisting of procedural texts with visual
observations are rising in popularity for learning processes of
complex tasks [12]–[14]. Among them, the cooking domain
has been targeted by several researchers, and our proposed
dataset, vSIMMR is also constructed in this domain. In Table
1, we compare the vSIMMR dataset with other cross-modal
recipe datasets from multiple perspectives. To analyze the
processes of food preparation, there are roughly two possible
visual information resources: videos and image sequences.

Cooking videos are a natural input that involves observa-
tion of food states. Zhou et al. [8] developed the YouCook2
dataset, which consists of 2,000 YouTube videos for 89
recipes. The EPIC-Kitchens dataset [7] and Breakfast dataset
[6] are large-scale cooking video datasets, but recipe texts
are not attached with videos. Although cooking videos have
an advantage in its observation of a continuous food-state
transition, the number of cooking observations is limited.
Hence, it suffers from a shortage of recipes covered in the
training data.

Image sequences are an alternative way to observe food
states, and the number of covered recipes tends to be much
larger than that of video datasets. Recipe QA [9] is a re-
cent dataset for cross-modal QA tasks. In [1], data from
the same web site are used for a recipe generation task.
Among this kind of dataset, the Cookpad Image Dataset [10]
is the world’s largest dataset, which contains 1.7M recipes
and (optional) image sequences. In addition, it is the only
cross-modal dataset with an ingredient list, and our vSIMMR
dataset is based on the Cookpad Image Dataset.

1We are going to release our dataset for research purpose publicly.

B. STRUCTURE ESTIMATION FOR CONTEXT
DEPENDENCY

In the 1980’s, Momouchi [15] proposed PT (Procedural
Text)-chart, which represents an entire workflow of actions
and materials as the Backus-Naur form. This work is pioneer
research to convert procedural texts into graphical representa-
tions. Recently, recipes have also been targeted in this field,
and Kiddon et al. [4] proposed an unsupervised method to
estimate a graph structure, called an action graph from a
recipe text. An action graph is also used in the challenging
visual reference resolution task described in [16], [17]. Mori
et al. [5] provided a recipe flow graph dataset, which is a fine-
structured machine-readable recipe representation. Jermsura-
wong and Nizar [3] have proposed the SIMMR dataset,
which provides a merging tree, a tree structure tracking the
ingredient merging operations.

Although the above work has focused on parsing text-only
recipes, little work has not addressed cross-modal analysis
due to limited available datasets. Pan et al. [11] recently
created a novel cross-modal dataset, MM-ReS dataset. This
dataset consists of recipes, image sequences, and annotated
tree structures, allowing us to analyze the cause-and-effect
relations between step texts and images in the recipe and
image sequence.

Our proposed dataset vSIMMR can be seen as a simple
extension of the MM-ReS dataset by connecting images not
only with step texts but also with ingredients, while their
work connects images only with a recipe. This difference
allows us to further investigate cause-and-effect relations
between the ingredients and images. Therefore, our dataset
vSIMMR can be said as the only cross-modal dataset with
recipes, ingredient lists, tree structures, and image sequences
as shown in Table 1.

C. PROCEDURAL TEXT GENERATION FROM VARIOUS
INPUTS

In the field of natural language generation, a procedural text
is a popular target because it requires a model to generate
coherent sentences by understanding its long context. Among
the many types of procedural text, recipes with rich descrip-
tions of a large variety of actions and involved ingredients are
featured. Kiddon et al. [18] and Bosselut et al. [19] proposed
a model to generate a recipe from its title and ingredients.
To deal with the long context of a recipe, the former uses
an attention mechanism, and the latter uses reinforcement
learning.

Recently, many vision and language datasets have ap-
peared in the cooking domain, and a challenging task, recipe
generation from an image, has also been proposed. Salvador
et al. [20] firstly tackled this problem and proposed a model
based on Transformer [21] to generate a recipe from a single
image of a prepared dish. Later, Wang et al. [22] proposed
a structure-aware model to generate a recipe from an image
by imitating a structure of the ground truth recipe in an
unsupervised manner.
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TABLE 1. Comparative overview of relevant cooking datasets.

Datasets Recipes? Ingredients? Structure? Visual data #Recipes
Breakfast [6] Video N/A

EPIC-Kitchens [7] Video N/A
YouCook2 [8] X Video 89
RecipeQA [9] X Image sequence 19,779

Story boarding [1] X Image sequence 16,405
Cookpad Image Dataset [10] X X Image sequence 1,715,595

Recipe Flow Graph [5] X X X N/A 266
Action Graph [4] X X X N/A 133

SIMMR [3] X X X N/A 260
MM-ReS [11] X X Image sequence 9,850

vSIMMR (ours) X X X Image sequence 2,103

Merging tree Procedural text

Image sequence

Cut the tomatoes.

Stir-fry the pumpkin.

Put them on the tomatoes.

Cover them with
ketchup and mayonnaise.

Image 1

Tomatoes
Pumpkin
Ketchup
Mayonnaise
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2
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4
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Image 3

Image 4

Materials
Step 1

(a) SIMMR (b) vSIMMR (ours)
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Step 3

Step 4
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Step 2

Step 3

Step 4

FIGURE 1. An overview of the vSIMMR dataset. Images in the image
sequence are aligned with the intermediate nodes in the merging tree and the
step texts in the procedural text.

There have also been two recent attempts to generate a
recipe from an image sequence depicting the intermediate
food states [1], [2]. To represent the global context in an
image sequence, Chandu et al. [1] incorporated a finite state
machine (FSM), and Nishimura et al. [2] incorporated a joint
embedding model into a recipe generator. In line with the
above studies, this paper proposes a method for explicitly
modeling the context dependency as a structure in a network
architecture that is compatible with previous methods.

III. PROPOSED DATASET: VSIMMR
We explain the proposed cross-modal dataset, vSIMMR,
which consists of 2,106 procedural texts, image sequences,
material lists, and annotated tree structures. In the following
subsections, we firstly provide an overview of the SIMMR
dataset [3] (III-A) and then describe important extension to
it (III-B) and annotation process of the vSIMMR dataset
(III-C).

A. MERGING TREE: CONTEXT DEPENDENCY
DESCRIPTION IN SIMMR
SIMMR was originally proposed to represent the context
dependency of a procedural text as a tree structure “merging
tree,” which describes the merging path of materials to a
single final product. Figure 1(a) exemplifies the merging
tree of the procedural text. The leaves (terminal nodes) and
intermediate nodes correspond to the materials and steps,
respectively. The root node is the final step and indicates the
final product of the procedural text.

Image sequence Merging tree Procedural text

FIGURE 2. Our browser-based annotation platform. A user can annotate a
merging tree by clicking unused ingredients and intermediate nodes
representing a mixture of ingredients at each step.

B. EXTENSION TO SIMMR: LARGER DATASET WITH
VISUAL REFERENCE

As shown in Figure 1(b), we extend SIMMR to vSIMMR
by annotating merging trees with image sequences. This
extension allows us to represent the common tree structure
between the visual and textual world because images in
the image sequence are aligned with the step texts in the
procedural text. Moreover, in terms of the number of labeled
data items, the vSIMMR dataset is about eight times larger
than the SIMMR dataset as shown in Table 1, and this point
is also an important extension to SIMMR.

C. ANNOTATION PROCESS OF THE TREE STRUCTURE

To build the vSIMMR dataset, we annotated merging trees
to a subset of the Cookpad Image Dataset, which consists
of procedural texts (= recipes), material lists (= ingredi-
ent lists), and image sequences. The annotation process is
roughly divided into two parts: (i) material name normaliza-
tion and (ii) merging tree annotation.
(i) Material name normalization. Firstly, to annotate merg-
ing trees correctly, we manually merged any notational vari-
ations of material names. This normalization is necessary
because all procedural texts and material lists in the Cookpad
Image Dataset are user-generated and thus material names
contain inconsistency [23]; for example, some write “2tbsp
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of oil” or “2tablespoon of oil” and others simply write “oil”.
We manually normalized them to the simplest form (in the
above example, we converted “2tbsp of oil” and “2tablespoon
of oil” into “oil”).
(ii) Merging tree annotation. Then, we annotated a merging
tree referring to an image sequence and procedural text.
Figure 2 shows our annotation platform, presenting the image
sequence on the left pane and the corresponding procedural
text on the right pane. We asked one annotator to construct
the merging tree by connecting unused ingredients and inter-
mediate nodes representing a mixture of ingredients at each
step. In this process, if steps are irrelevant to the cooking
process, we instructed the annotator to remove such step texts
and images from an image sequence and procedural text;
for example, in Figure 2, text and image of step 1 “Prepare
ingredients. Left is the yogurt and right is the avocado” was
removed. When the annotator submits the annotated structure
to the server, the system validates whether all ingredients are
used and whether the created structure is a tree structure.

IV. PROPOSED METHOD

After presenting the task definition and an overview, two
main modules of the proposed method are described in IV-A
and IV-B, then IV-C presents an implementation idea for
semi-supervised learning.
Task definition. Let Dtr be a training dataset, where
{x,y, g} ∈ Dtr is an input x, procedural text y, and its
structure (e.g., merging tree) g. x = {xv,xmat} has two
components; an image sequence xv = {xnv |n = 1, . . . , N}
and a material list xmat = {xmmat|m = 1, . . . ,M}. N and
M are the number of images and materials, respectively.
y = {yn|n = 1, . . . , N} consists of N steps of textual
instructions yns, where {xnv , yn} has a one-to-one correspon-
dence. Note that g is unavailable for most of the data points
in Dtr (semi-supervised setting). Hence, the procedural text
generation task described in this paper is to train a model that
estimates a procedural text ŷ from an input x.
Overview of the proposed method. Figure 3 shows an
overview of the proposed method. To incorporate context
dependency into the decoder for gaining global coherency,
our model tries to estimate the structure ĝ explicitly and use it
in the decoder. This is roughly described by the combination
of an encoder E : x → z, ĝ and a decoder D : z, ĝ → ŷ,
where z is the latent representation of input x. Note that
both E and D are trained in an end-to-end manner instead
of training E and D separately.

Additionally, based on our intuition that a merging tree is
identical regardless of the representation modality, we add
a module Ey : ŷ → ˆ̂g to re-predict the merging tree ˆ̂g
from ŷ. Here, this tree re-prediction module encourages the
generated procedural text to be more coherent by preserving
the merging tree.

A. STRUCTURE-AWARE PROCEDURAL TEXT
GENERATION MODEL
Our model generates a procedural text coherently through the
following three processes: First, (i) encodes x into a latent
representation z. Then, (ii) determines ĝ through a Gumbel
softmax resampling [24], which is employed for end-to-end
training. Finally, (iii) decodes ŷ from ĝ with a structured
decoder of a Tree-LSTM.
(i) Link probability matrix calculation. A graph structure,
such as a merging tree, can be predicted from a probability
matrix whose ij-element represents the probability that a
link exists from the i-th node to the j-th node. Because
a processed material cannot be merged by returning to a
previous step, a step-to-step link has an order constraint,
whereas a material-to-step does not. Hence, we prepare two
sub-modules separately to calculate the two link probability
matrices (LPMs): step-to-step LPM Pv→v ∈ RN×N and
material-to-step LPM Pmat→v ∈ RM×N .
(i-1) Step-to-step LPM calculation. Each image xnv is fed
to a pre-trained image encoder Fv . This projects xnv onto znv ,
where we define zv = {znv |n = 1, . . . , N}. To calculate
a link probability between two steps, zv is further converted
into row and column feature vectors z1

v and z2
v using different

biLSTMs E1
v→v and E2

v→v , respectively. Then, each element
pijv→v in the step-to-step LPM Pv→v is calculated as follows:

pijv→v =

ε (i ≤ j)
exp (z1v,i·z

2
v,j)∑

k exp (z1v,i·z2z,k)
(otherwise)

where z1
v = E1

v→v(Fv(xv)), z
2
v = E2

v→v(Fv(xv)).

(1)

In Eq (1), z1v,i is the i-th element of z1
v and z2v,j is the j-th

element of z2
v . pijv→v is set to ε (= 1.0× 10−7) for numerical

stability when i ≤ j to preserve the order constraint.
(i-2) Material-to-step LPM calculation. Next, we calculate
the material-to-step LPM. For the step side, we calculate
zmaxv from z1

v and z2
v with an element-wise max-pooling

layer. The material-side feature is calculated in two stages.
First, each xmmat→v is converted into a distributed represen-
tation by Fmat

2. Second, we further transform them into
zmat, which is aware of ordering information of material list
xmat. This encoding is necessary because we assume that
a user-generated material list implies some order, although
a material list is an unordered set generally. Specifically,
as described in [26], we utilize another biLSTM Emat→v ,
which further encodes each distributed representation into
a material feature zmmat→v ∈ zmat. Finally, each element
pijmat→v in the material-to-step LPM Pmat→v is calculated
as follows:

pijmat→v =
exp (zimat→v · zmaxv,j )∑
k exp (z

i
mat→v · zmaxv,k )

, (2)

where zmat = Emat→v(Fmat(xmat)). (3)

2For Fmat, we use word2vec [25] pre-trained on all recipes in Dtr .
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FIGURE 3. An overview of the proposed method. The structure-aware procedural text generation model (Section IV-A) has three processes: (i) Link Probability
Matrix Calculation, (ii) Gumbel Softmax Resampling, and (iii) Structured Decoder. Additionally, the model re-predict a merging tree from a generated procedural text
(Section IV-B).

When the sample has an annotation of the structure g, we
calculate a tree prediction loss Ltp(g, Pv→v, Pmat→v) as a
column-wise cross-entropy loss.
(ii) Gumbel softmax resampling. To make the model fully
derivative, we use a Gumbel softmax resampling. To deter-
mine the tree structure ĝ directly from the LPMs, we apply
the straight-through (ST) version of Gumbel softmax resam-
pling. The temperature parameter τ is set to 0.5 according to
the discussion in [27], [28]3.
(iii) Structured decoder. To incorporate the context depen-
dency based on ĝ into a text generator, we use a variant
of Tree-LSTM, called Child-sum Tree LSTM [29]. Child-
sum Tree-LSTM Dg : zmaxv , zmat, ĝ → h, where h =
{hn|n = 1, . . . , N}, converts intermediate nodes of ĝ into
hidden states h. In forwarding phase, the Child-sum Tree-
LSTM updates the hidden state hs and memory cell cs from
each child and zmaxv,n based on observation. See appendix A
for the calculation details.

The output of Tree-LSTM h is further decoded using a
procedural text generator Dy : znv , h

n → ŷn. As instances of
Dy , we used five state-of-the-art procedural text generators
in our experiments. Finally, the model generates a procedural
text, and the cross-entropy loss Ltext is calculated.

B. MERGING TREE RE-PREDICTION
Because the tree structure is identical regardless of the vi-
sual and linguistic representation, it should be consistently
re-predictable from the textural information in nature. Ex-
plicitly preserving such a structure facilitates the generated
procedural texts to be more coherent. Hence, we prepared
Ey : ŷ → zŷ for predicting P̂v→v and P̂mat→v . The re-
predicted matrices are then compared to g, where g is the
ground truth (for samples with an annotation) or a result

3This setting is also supported by an experience appearing described in
appendix C

determined by column-wise argmax on Pv→v and Pmat→v
(for samples without an annotation). In addition, P̂mat→v
is simply obtained by substituting zmaxv in Eq (3) into zŷ .
Here, P̂v→v is obtained by substituting z1

v and z2
v in Eq (1)

into zmaxv and zŷ , respectively. Finally, a tree consistency
loss Ltc(g, P̂v→v, P̂mat→v) is calculated as the column-wise
cross-entropy loss on P̂v→v and P̂mat→v with supervision g.

C. VAE-BASED RECONSTRUCTION MODULES FOR
SEMI-SUPERVISED LEARNING
As discussed in [30] for semi-supervised learning, we use
two variational autoencoder (VAE) architectures [31]: a
tree2image VAE and a step2image VAE. For the VAE mod-
els, we employ βVAE [32], which is widely used owing to its
ability to disentangle the latent representations. We calculate
the reconstruction losses Lt2i(h, zv) and Ls2i(zŷ , zv) in
tree2image VAE and step2image VAE as follow:

Lt2i(h, zv)
= E
q1φ

[log p(zv|h)]− βDKL(q
1
φ(h|zv)||p(h)) (4)

Ls2i(zŷ , zv)
= E
q2φ

[log p(zv|zŷ)]− βDKL(q
2
φ(zŷ |zv)||p(zŷ)),

(5)

where q1φ represents concatenated networks of the encoders
E and Tree-LSTM Dg and q2φ represents the networks ap-
pended the re-prediction module Ey to q1φ. Here, β is set to
be 4 according to the discussion in [32].

Finally, the model is trained with the loss function L,
which is defined as follows:

L = Ltext + Ltp + λtcLtc + λt2iLt2i + λs2iLs2i, (6)

where the λ∗s are hyper-parameters tune by grid search with
a validation set (see appendix B).
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TABLE 2. Statistics of our Cookpad Image Dataset split (data used in
vSIMMER are excluded).

Cookpad Image Dataset train val test
#recipes 163,525 18,051 20,193
#steps 6.24 6.15 6.26
#words 148.52 147.02 148.50
#ingredients 7.85 7.79 7.86

TABLE 3. Statistics of vSIMMR.

vSIMMR train val test
#recipes 1,603 250 250
#steps 6.78 6.74 6.85
#words 118.23 113.91 114.68
#ingredients 6.58 6.37 6.64

V. EXPERIMENTS
This section presents the evaluation of the generated proce-
dural texts in the three criteria: automatic evaluation (V-C),
human evaluation (V-D), and qualitative analysis (V-E), with
a thorough ablation. We also discuss the merging tree accu-
racy (V-D) and the satisfactory number of labeled data items
for procedural text generation (V-G).

A. DATASETS
We used the Cookpad Image Dataset, which has 1.7M recipes
(= procedural texts) and ingredient lists (= material lists)
with (optional) image sequences. For our experiments, we
discarded recipes having steps without images. Each recipe
has a complete image sequence xv , a recipe y, and an
ingredient list xmat. We further discarded some recipes with
less than two steps or two ingredients because such a recipe
has little ambiguity in its structure g. As a result, the size of
the dataset is 200k.
Preprocessing. Each image was resized so that the longer
edge had 256 pixels while keeping the aspect ratio. A central
region with 224×224 pixels was then cropped. All recipes
in the Cookpad Image Dataset are written in Japanese.
Thus, to split the sentences into words, we used a Japanese
morphological parser, KyTea [34]. All words appearing less
than three times were then replaced with an unknown word
symbol. Table 2 and 3 show the dataset’s statistics.

B. IMPLEMENTATION DETAILS
As the encoder for visual inputs Fv , we used the one pro-
posed in [2]. This model, based on ResNet50 [35], was
pre-trained by an image-step retrieval task on the Cookpad
Image Dataset. We preliminary confirmed that this metric
learning provides a better performance in recipe generation
than pre-training on ImageNet [36], owing to the domain
fitting. We set the output dimension of the image encoder Fv
to 2, 048. The parameters of the pre-trained model Fv were
fixed during training for recipe generation, as described in
previous studies [1], [2], [37], [38]. The output dimension of
word2vec Fmat for the ingredient encoder was set to 300,
and the dimension of the LSTM hidden layer of encoders,
E1
v→v, E

2
v→v and Ey , was set to 512. The batch size was set

to 16, and Adam [39] was used as the optimizer.
Models. To prove the versatile impact of the proposed
method, we tested it on various state-of-the-art methods for
image-sequence-to-recipe generation, as described below.
• Images2seq [37] was originally proposed for the task of

visual storytelling (ViST). This model uses biLSTM to
consider the global context in an image sequence.

• GLAC Net [38] achieved a state-of-the-art performance
on ViST. This model takes the global context by fusing
global and local image feature vectors encoded by biL-
STM and Fv .

• SSiD [1] is a method proposed for procedural text
generation. It vectorizes steps using sent2vec [40], and
then they are clustered by k-means, where the obtained
clusters are treated as the states of an FSM. Based on the
transition probabilities of the FSM, the model explores
the change of the context to represent the global context
richly.

• SSiL [1] is a variant of SSiD, which has an additional
loss of Kullback-Leibler divergence to better imitate the
step transition of the ground truth.

• RetAttn [2] achieves a comparative method to SSiL,
but by a different approach; it pre-trains the model with
image-text retrieval task, then in the text generation task,
the retrieved text features are involved with an attention
mechanism to generate a better quality text.

Ablations. For all five methods above, we conducted ablation
studies on the following variations to reveal the impact of a
merging tree estimation.
• Baseline (original) does not use any modules of the

proposed method4.
• Half model computes the tree prediction loss Ltp for

samples with the ground truth with the text generation
loss Ltext. In addition, Lt2i is also calculated for sam-
ples with no annotation.

• Full model calculates Ltc in addition to the half model.
In the full model, two losses Lt2i and Ls2i5 are addi-
tionally calculated for samples with no annotation.

Note that the baseline models originally have no ingre-
dient lists in their inputs. Thus, for a fair comparison, we
calculate the ingredient vectors in the same manner as with
the proposed method and concatenate the average vector
of the ingredient vectors with each image feature vector.
When training and evaluating the baseline models, for a
fair comparison, we used recipes in both the vSIMMR and
Cookpad Image Dataset.
Enhanced baselines. The number of trainable parameters in
the baseline model is about 1.5 times smaller than that in
the half and full models. This difference occurs because the
full model has additional modules for encoding the structure
although the number of parameters in the text generator is

4The parameter setting of each model is followed to the original paper.
5In the half model, Ls2i cannot be calculated because the step vectors zŷ

appear only in the re-prediction module Ey in q2φ, which is the full model
(see Eq (5)).
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TABLE 4. Word-overlap metrics for the five base models with half and full models. The scores in bold are the best for each base model. B=BLEU, RL=ROUGE-L,
D=Distinct, I=Ingredient, and Ac=Action. * indicates statistically significant difference (p < 0.001) from the base models (original) through bootstrap sampling [33].

B1 B4 RL D1 D2 I-B1 I-B2 I-B3 I-B4 I-RL Ac-B1 Ac-B2 Ac-B3 Ac-B4 Ac-RL
Images2seq (original) 27.5 5.1 18.4 38.3 54.7 7.0 1.8 0.5 0.1 9.7 18.2 8.1 3.8 2.0 18.4
Images2seq (wide) 25.2 4.6 17.5 38.1 56.8 4.0 0.8 0.1 0.0 0.8 13.0 5.3 2.6 1.4 16.6
Images2seq (deep) 22.2 3.4 17.3 38.3 54.6 4.2 0.8 0.1 0.0 6.6 11.1 5.0 2.6 1.5 16.2
+ Half 27.8∗ 5.8∗ 20.6∗ 51.1∗ 75.0∗ 7.9∗ 2.2∗ 0.7∗ 0.2 12.7∗ 18.8∗ 8.4∗ 3.9 2.0 21.2∗
+ Full 29.6∗ 6.3∗ 21.7∗ 47.6∗ 71.0∗ 8.8∗ 2.7∗ 0.9∗ 0.3∗ 13.8∗ 21.4∗ 9.4∗ 4.3∗ 2.1 22.9∗
GLAC Net (original) 28.5 5.9 21.4 46.6 69.0 9.5 2.9 0.9 0.3 13.2 21.2 9.3 4.3 2.1 22.8
GLAC Net (wide) 26.3 5.1 19.3 40.6 58.9 7.7 2.1 0.6 0.2 10.8 18.1 8.0 3.9 2.1 20.4
GLAC Net (deep) 27.7 5.3 19.8 41.5 60.4 8.2 2.3 0.7 0.2 11.2 20.5 9.2 4.3 2.4 21.4
+ Half 28.5 5.9 21.8∗ 46.7 68.8 10.5∗ 3.4∗ 1.1∗ 0.4 15.6∗ 21.0 9.4 4.4 2.3 23.1
+ Full 28.9 6.1 21.3 47.2∗ 69.9∗ 11.8∗ 3.8∗ 1.2∗ 0.4 16.3∗ 21.0 9.1 4.4 2.3 22.5
SSiD (original) 28.7 6.0 20.9 45.5 66.6 8.6 2.7 0.8 0.2 13.1 20.1 8.7 4.0 2.1 21.6
SSiD (wide) 28.6 5.7 19.6 41.0 60.0 7.9 2.1 0.6 0.1 11.3 17.9 7.6 3.5 1.7 19.4
SSiD (deep) 27.6 5.2 19.7 41.0 59.1 6.9 1.9 0.5 0.2 10.6 20.1 9.0 4.3 2.2 21.8
+ Half 30.3∗ 6.2∗ 20.8 43.9 65.1 11.4∗ 3.7∗ 1.3∗ 0.4∗ 16.4∗ 19.8 8.7 4.4∗ 2.2 22.1∗
+ Full 31.1∗ 6.4∗ 21.6∗ 48.3∗ 71.0∗ 12.9∗ 4.1∗ 1.2∗ 0.4∗ 16.7∗ 21.5∗ 9.5∗ 4.5∗ 2.2 23.5∗
SSiL (original) 31.0 6.3 21.4 45.5 66.8 8.3 2.4 0.7 0.2 12.5 19.8 8.7 4.0 2.0 22.1
SSiL (wide) 26.2 5.5 20.6 46.3 67.4 9.2 2.7 0.8 0.2 13.0 21.1 9.4 4.5 2.3 22.3
SSiL (deep) 27.8 5.6 20.3 42.9 62.8 8.3 2.4 0.7 0.2 12.1 19.9 8.6 4.0 2.1 22.3
+ Half 28.1 5.4 21.4 46.7∗ 68.2∗ 11.3∗ 3.7∗ 1.2∗ 0.4∗ 16.9∗ 18.7 8.1 3.8 2.0 22.2
+ Full 30.4 6.4 21.9∗ 47.3∗ 70.9∗ 12.4∗ 4.2∗ 1.4∗ 0.4∗ 17.0∗ 21.4∗ 9.5∗ 4.5∗ 2.3∗ 23.0∗
RetAttn (original) 32.2 6.5 21.6 40.2 60.3 11.2 3.3 1.0 0.3 14.5 22.1 9.0 3.2 1.5 21.2
RetAttn (wide) 28.3 5.9 21.1 44.5 65.1 12.0 3.1 1.2 0.3 14.1 22.0 8.9 4.0 1.9 22.0
RetAttn (deep) 29.8 6.3 21.5 44.1 65.4 12.1 3.7 1.2 0.3 14.7 22.1 9.1 4.2 1.9 22.5
+ Half 32.2 6.5 21.8 52.4∗ 77.8∗ 11.9∗ 3.7∗ 1.2 0.3 14.8 21.8 9.4∗ 4.2∗ 2.0∗ 22.9∗
+ Full 33.2 7.1 22.1 52.7∗ 78.6∗ 12.1∗ 3.8∗ 1.2 0.3 14.8 22.3 9.5∗ 4.2∗ 2.0∗ 23.1∗

TABLE 5. Human evaluation results. RetAttn was used for the “Baseline,” “Half,” and “Full” models. Among the three types of baselines, we employed the original
baseline in our experiments. “F,” “IU,” and “IF” indicate the fluency, ingredient use, and image fitting, respectively. (a) Evaluation with recipes randomly selected from
the test set. (b) Evaluation with the longest 25% recipes in (a).

(a) with all 120 recipes.
Baseline Full Tie

F 26.7 62.5 10.8
IU 30.8 66.7 2.5
IF 31.7 45.0 23.3

Half Full Tie
F 35.8 55.8 8.3
IU 24.2 70.8 5.0
IF 21.7 59.2 19.2

(b) with the longest 25%(=30/120) recipes.
Baseline Full Tie

F 16.7 70.0 13.3
IU 26.7 73.3 0.0
IF 36.7 50.0 13.3

Half Full Tie
F 23.3 66.7 10.0
IU 16.7 83.3 0
IF 10.0 86.7 3.3

exactly the same. Thus, for a fair comparison, we added two
enhanced baselines by changing the number of parameters in
the biLSTM encoder: Baseline (wide) and Baseline (deep).
• Baseline (wide) widely changes the hidden size H by

fixing the number of layers L = 1 in the encoder
biLSTM.

• Baseline (deep) deeply increases the number of layers
L = 4 and changes the hidden size H in the encoder
biLSTM.

Based on these strategies, we changed the total number of
parameters near to that in the full models. Detailed settings
are described in Appendix B.

C. IMPACT ON PROCEDURAL TEXT GENERATION
Scores. We computed the generated recipes with commonly
used metrics: word-overlap metrics (BLEU1/4 [41] and
ROUGE-L [42]) and diversity metrics (Distinct1/2 [43]:
percentage of distinct unigrams/bigrams). However, these
metrics do not evaluate the coherency of generated recipes,
the global ordering of instructions grounded in the real
world. Therefore, as with [19], we also report word-overlap
metrics on the extracted sequence of actions and ingredients
described in the recipe. Each word sequence extracted from a
recipe depict a simulated world where actions are performed
and ingredients are used. Thus, the orderings of actions and

ingredients in the generated recipes should agree with those
in the ground truth.

To extract the action and ingredient sequences from
recipes, we trained the named entity recognizer, Flair6 [44]
with the recipe flow graph corpus [5], in which the action and
ingredient words are defined7. We applied the trained model
to both the generated recipes and ground truth, and calculated
action- and ingredient-level BLEU n (n = 1, 2, 3, 4) and
ROUGE-L, respectively.
Results. Table 4 shows that our full model achieves steady
improvements from the original and enhanced baselines in
both of word-overlap metrics and diversity metrics. From this
result, we can say that the supervision of the merging tree
has contributed to increasing both accuracy and diversity.
Moreover, in the word-overlap metrics on the action and
ingredient sequences, the proposed models, particularly the
full models, substantially outperform (p < 0.001) both
the original and enhanced baselines in most metrics. This
indicates that incorporating a merging tree gains the global
coherency in a versatile manner, and re-predicting a merging

6https://github.com/flairNLP/flair
7We trained the recipe NER with 2,072, 230, and 256 sentences for

training, validation, and test, respectively. The obtained model scored F1
values of 91.8 and 94.7 for the action and ingredient word recognition,
respectively.
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Merging tree generated by half model Merging tree generated by full model

Models Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

RetAttn 
(baseline)

Mix all 
ingredients.

Chop the burdock 
into thin strips, 
and put them in 
water.

Slice the carrot.
Pour the sesame 
oil into the pan, 
and stir-fry the 
carrot.

Add the carrots 
and stir-fry them.

After the carrot 
becomes wilted, 
add the hijiki and 
stir-fry it.

RetAttn 
(half model)

Prepare 
ingredients.

Chop the burdock 
into thin strips, 
and put them in 
water.

Cut the carrot  
into fine strips.

After preheating 
the pan, stir-fry 
the carrot.

After the sprout, 
add the carrots 
and stir-fry them.

Season with salt 
and pepper.

RetAttn 
(full model)

Prepare 
ingredients, and 
mix seasonings 
marked ● in the 
ingredient list.

Chop the burdock 
into this strips, 
and put them in 
water.

Cut the carrot  
into fine strips.

Pour the sesame 
oil into the pan, 
and stir-fry the 
carrot.

After the carrot 
becomes wilted, 
add the burdock 
and stir-fry it.

Add seasonings 
and mix them. 
Serve on a plate.

Ground Truth
Mix seasonings 
marked ● in the 
ingredient list.

Peel the burdock, 
chop it into 5-cm 
strips, and put 
them in water.

Cut the carrot  
into fine strips.

Pour the sesame oil 
into the pan, and 
stir-fry the burdock. 
Add carrots and stir-
fry them.

Add step 1 
seasonings into  
the pan, and stir-
fry them.

Turn off the heat, 
and add white 
sesame. 
Serve on a plate.

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

Burdock
Carrot

● Sugar
● Sake

● Soy sauce

White sesame

● Wasabi

Sesame oil

Burdock

Carrot

● Sugar
● Sake

● Soy sauce

White sesame

● Wasabi

Sesame oil

Ingredients Burdock, Carrot, ● Sugar, ● Sake, ● Soy sauce, ● Wasabi, White sesame, Sesame oil 

Images

FIGURE 4. Example of generated recipes and merging trees. Here, the baseline (original), half, and full models are compared with the ground truth. This sample
has no ground truth of the merging tree because it belongs to the Cookpad Image Dataset, not to vSIMMR. Note that the recipes are originally in Japanese and
have been translated into English (Japanese version is shown in appendix D).

TABLE 6. Merging tree accuracy.

Material-to-step Step-to-step Total
Baseline

Merging tree only 70.1 90.0 80.3
Half models

Images2seq 73.2 90.7 81.5
GLAC Net 72.1 91.4 81.2
SSiD 73.3 91.0 81.6
SSiL 73.1 90.6 81.3
RetAttn 73.1 90.4 81.3

Full models
Images2seq 72.9 90.0 81.0
GLAC Net 73.7 90.5 81.7
SSiD 72.8 90.7 81.3
SSiL 73.8 90.5 81.7
RetAttn 73.0 91.0 81.5

tree further facilitates generated recipes to be more coherent.

D. HUMAN EVALUATION

To confirm the impact of the increase in the word-overlap
metrics for humans, we conducted a human evaluation on 120
recipes randomly selected from the test set. We evaluated our
model on the three aspects of recipe quality as examined in
[1], [19]: fluency (F), ingredient use (IU), and image fitting
(IF).
Settings. For each example, an annotator was asked to
compare a pair of recipes, each generated from an identical
image sequence but by a different model. The annotator
was then asked to select the better recipe according to the
three criteria above. For the ingredient use, the annotator
selected the recipe that used the ingredients more correctly.
For image fitting, we asked the annotators to select the recipe
that was more suitable for the image sequence. For the
image-sequence-to-recipe model, we used RetAttn, whose
base model performed best in Table 4.
Results. Table 5 lists the results, showing the clear advantage
of the proposed method over both the baseline and half

8 VOLUME 4, 2016



Nishimura et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Images2seq GLAC Net SSiD SSiL RetAttn

Ac-B1

I-B1 I-B3 I-B4 I-RL

Ac-B2 Ac-B3 Ac-B4 Ac-RL

5.0
7.5

10.0
12.5

1
80 1

4
1
2 1

I-B2

1
80 1

4
1
2 1

1.0
2.0
3.0
4.0

1
80 1

4
1
2 1

0.5

1.0

1
80 1

4
1
2 10.0

0.1
0.2
0.3
0.4

1
80 1

4
1
2 1

1
80 1

4
1
2 1

15.0
17.5
20.0
22.5

1
80 1

4
1
2 1

6.0
7.0
8.0
9.0

1
80 1

4
1
2 1

2.5
3.0
3.5
4.0
4.5

11
80 1

4
1
2

1.0

1.5

2.0

11
2

1
4

1
80

7.5
10.0
12.5
15.0

17.5
20.0
22.5

FIGURE 5. (Best viewed in color). Change in action- and ingredient-level word-overlap metrics with a controlled ratio of labeled data. Dotted horizontal lines show
that the performance of the baseline (original) shown in Table 4. Note that the entire labeled data accounted for approximately 1% of the training set.

model in all three aspects. To demonstrate the effect of long
context recipes, we further evaluate the proposed methods
on the longest 25% (=30/120) of the recipes8. As a result,
the superiority of the proposed method is highlighted more
strongly. This reveals that re-predicting merging trees helped
maintain the global coherency of long recipes.

E. QUALITATIVE ANALYSIS
Figure 4 shows an example of the generated recipes. Other
examples are discussed in appendix D.
Insights. Maintaining global coherency is essential partic-
ularly for understanding the procedural text. The baseline
model loses its maintenance because the model tends to gen-
erate unsuitable duplicate actions (e.g., “stir-fry the carrot” in
steps 4 and 5). These repetitive phrases are suppressed in the
recipe generated by the proposed model. In addition, owing
to a merging tree estimation, it is remarkable that the full
model generates a referred expression (e.g., the “•” in the
recipe generated by the full model in step 1 in the figure),
which refers to specific ingredients marked in the ingredient
list.
Limitations. Although the estimated merging tree is com-
pletely correct, we still found some slight differences with the
ground truth. For example, in step 4, the model only adds car-
rots, but burdock and carrots are added by the ground truth. In
step 5, the model does not talk about adding seasonings, but
they are added in step 6. This is likely occurred because of the
nature of user-generated recipes; the image-step alignment is
not regularized and fluctuations are likely. The image in step
5 is not typical in the sense that the image is not a result
of the instruction step (the seasoning is added but not stir-

8The length of a recipe is based on the two criteria: the number of steps
as the primal criterion and the number of words in a recipe following it.

fried as the instruction). Although it is beyond the scope of
this paper, a more strict image-step alignment in the dataset
would improve the quality of the recipe generation.

F. MERGING TREE EVALUATION
Table 6 shows an evaluation of the tree prediction accuracy.
Here, the baseline only estimated the tree and not the recipe,
and the model was trained with the pairs of image sequences
and merging trees in the training set of vSIMMR. From
these results, we can see that the procedural text generation
contributes to predicting the merging tree. When comparing
the half model with the full model, we can also see that the
best score in every metrics is achieved by the full models.
This indicates that the tree re-prediction module will guide
the model to estimate the merging tree correctly.

G. SATISFACTORY NUMBER OF LABELED DATA ITEMS
To estimate the satisfactory number of labeled data items,
we controlled the ratio of labeled data to the values of 0,
1
8 , 1

4 , 1
2 , and 1. As evaluation metrics, we use the action-

and ingredient-level BLEU n (n = 1, 2, 3, 4) and ROUGE-L
to indicate the tendency of controlling training labeled data
items. Note that, when the ratio is 0, the model is trained
with the proposed architecture in an unsupervised manner.
Figure 5 shows the results. In general, most models achieve
a higher performance as the ratio of labeled data increases.
This shows that training the labeled data in a semi-supervised
manner leads to an increase in the quality of the recipe
generation. By contrast, interestingly, RetAttn achieves a
high performance without any labeled data, indicating that
the proposed architecture itself enables RetAttn to generate
a coherent recipe. Although the GLAC Net, SSiD, and SSiL
require using from 25% to 50% of the labeled data to perform
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better than the baselines, Images2seq must use 100% of the
labeled data. This result indicates that models with high
complexity (GLAC Net, SSiD, SSiL) can learn from less
labeled data than the simple model (Images2seq).

VI. CONCLUSION
In this paper, we investigated the impact of explicitly intro-
ducing the context dependency on the task of procedural text
generation from an image sequence. To achieve this goal, we
proposed the vSIMMR dataset by annotating merging trees to
a subset of the Cookpad Image Dataset. Using the vSIMMR
dataset, we then proposed the structure-aware procedural
text generation model, which gains the global coherency by
explicitly predicting a merging tree. Additionally, we added
a tree re-prediction module to facilitate the generated proce-
dural texts to be more coherent, motivated by the assumption
that the structure should be common regardless of the visual
and linguistic representations.

We tested the proposed method in the cooking domain,
and the results showed that the proposed method can boost
the performance of the traditional models in a versatile way
and for various metrics. Moreover, a qualitative analysis
demonstrated that the model generates a coherent recipe by
understanding the context dependency efficiently.

.

APPENDIX A CHILD-SUM TREE-LSTM CALCULATION
When a child is the m-th material zmmat, Child-sum Tree-
LSTM calculates cm and hm using trainable linear functions
fc : zmmat → cmmat and fh : zmmat → hmmat, respectively.
On the other hand, when a child is n-th step node, it always
outputs cn and hn.

Let C(n) denote the set of children of node n. Let W (∗)

and U (∗) be the weighted matrices, and b(∗) be the bias. The
notations σ(·) and tanh(·) mean the sigmoid function and the
tangent hyperbolic function, respectively. Then, the Child-
sum Tree-LSTM is described as follows:

h̃n =
∑

j∈C(n)

hnj (7)

in = σ(W (i)zmaxv,n + U (i)h̃n + b(i)) (8)

fnj = σ(W (f)zmaxv,n + U (f)h̃n + b(f)) (9)

on = σ(W (o)zmaxv,n + U (o)h̃n + b(o)) (10)

un = tanh(W (u)zmaxv,n + U (u)h̃n + b(u)) (11)

cn = in � un +
∑

j∈C(n)

fnj � cj (12)

hn = on � tanh(cn). (13)

Note that the superscript n of the non-leaf nodes is the same
as that of the images xv , and thus, the indices are in a one-
to-one correspondence.

TABLE 7. Hyper-parameters we used in our experiments. They are
determined by a grid search with the validation set.

λtc λt2i λs2i
Images2seq 0.1 0.01 0.1
GLAC Net 0.01 0.01 0.1
SSiD 0.001 0.1 0.001
SSiL 0.1 0.1 0.001
RetAttn 0.001 0.001 0.01

APPENDIX B RESULTS OF HYPER PARAMETERS
TUNING
Hyper-parameter settings. We tuned the hyper-parameters
λtc, λt2i, and λs2i for each of the five base models by a
grid search with a validation set. Three different parameters,
λ∗ ∈ {0.001, 0.01, 0.1}, were used in the experiment. Hence,
we searched 27 (= 3× 3× 3) points for each method. Table
7 lists the results of the hyper-parameter tuning.
Trainable parameter settings. As described in Section V-B,
the total number of parameters θb in the baselines is about
1.5 times smaller than that θf in the full models. For a fair
comparison, we added the two enhanced baselines, which
have θb close to θf by changing the hidden size H and
the number of layers L in the following process. First, we
calculated θf in the full models. Next, we simply fixed L to
1 (wide) and 4 (deep), and then incremented H by 50 until
θb is over θf . Table 8 shows the hidden size H , the number
of layers L, and the total number of trainable parameters θ
tuned in our experiments, respectively.

APPENDIX C TEMPERATURE PARAMETER OF
GUMBEL SOFTMAX
One of the extra hyper-parameters, the Gumbel softmax
temperature τ , is known to significantly affect the gradi-
ent computation [24], [27], [28]. Here, we explored how
the temperature rate affects the performance. Four different
temperature rates τ ∈ {0.005, 0.05, 0.5, 5} were used in
this experiment. Figure 6 shows the results for the overlap
metrics, indicating that τ = 0.5 tended to achieve the better
performance among the candidates. When τ was too low,
the model suffered from a gradient vanishing problem, which
prevented it from learning to generate a procedural text with
a sampled merging tree. By contrast, when τ was too high,
it was difficult to stabilize the model. As described in [24],
to tackle this problem, we also conducted an experiment on
annealing the temperature from high to low at each iteration.
This annealing technique did not work in our experiment,
however, so we set τ = 0.5 during the training.

APPENDIX D GENERATED RECIPE EXAMPLES
In addition to the example described in the main paper, we
show other examples of generated recipes in Figures 7-11,
in which different numbers of steps are sampled. Note that
the first example (Figure 7) is the Japanese version of the
example (Figure 4) described in the main paper. All recipes
are originally in Japanese and have been translated into
English. As the sequence becomes longer, the baseline model
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TABLE 8. The model’s parameter settings used in the experiments. H, L, and θ represent the hidden size, the number of layers, and the total number of
parameters, respectively.

Baseline (original) Baseline (wide) Baseline (deep) Full model
H L θ H L θ H L θ H L θ

Images2seq 512 1 46,460,593 1,600 1 83,800,753 700 4 86,872,753 512 1 82,385,073
GLAC Net 1,024 2 110,312,113 2,250 1 162,487,741 1,000 4 161,438,241 1,024 2 161,284,017
SSiD 1,024 2 110,710,293 2,400 1 162,644,629 1,050 4 165,994,429 1,024 2 161,460,145
SSiL 1,024 2 110,710,293 2,400 1 162,644,629 1,050 4 165,994,429 1,024 2 161,460,145
RetAttn 512 1 109,738,161 1,300 1 147,801,713 650 4 146,137,713 512 1 145,662,641

Images2seq GLAC Net SSiD SSiL RetAttn

Ac-B1

I-B1 I-B3 I-B4 I-RL

Ac-B2 Ac-B3 Ac-B4 Ac-RL

I-B2

0.005 0.05 0.5 5.0
5.0
7.5

10.0
12.5

0.005 0.05 0.5 5.0
1.0
2.0
3.0
4.0

0.005 0.05 0.5 5.0
7.5

10.0
12.5
15.0
17.5

0.005 0.05 0.5 5.0
0.5
1.0

0.005 0.05 0.5 5.0
7.5

10.0
12.5
15.0
17.5

0.005 0.05 0.5 5.0
12.5
15.0
17.5
20.0
22.5

0.005 0.05 0.5 5.0
6.0
8.0

10.0

0.005 0.05 0.5 5.0
2.0
3.0
4.0

0.005 0.05 0.5 5.0
1.0
1.5
2.0

0.005 0.05 0.5 5.0
18.0
20.0
22.0

FIGURE 6. Change in the overlap metrics under controlled temperature rates τ .

tends to generate actions in the improper order. For example,
in steps 6 and 7 in Figure 11, the baseline model generates
“add,” “mix,” and “serve,” whereas the full model generates
“crush,” and “add,” which is the same order as in the ground
truth. This confirms that the proposed method can consider
a long context dependency by incorporating a merging tree
estimate into the recipe generator.

Although the proposed method facilitates the generated
recipes to be coherent, the quality of the generated recipes
can be still improved. For example, in step 2 in Figure 8,
the full model says “Add butter to the bowl and heat them
with the microwave.” but the butter is not included in the
ingredient list. This is because our method does not have
any mechanism to explicitly access the vocabulary used in
the ingredient list on its decoding process. To address this
problem, incorporating a copying mechanism [45] into the
decoder may be one of the scenarios of generating words
in the ingredient list. However, as stated in Section III-C,
recipes and ingredient lists are inconsistent due to the nature
of user-generated contents. Thus, it is not clear whether such
an additional mechanism works well for solving the problem
directly.
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Merging tree generated by half model Merging tree generated by full model

Models Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

RetAttn 
(baseline)

材料を全て 
混ぜます。

ごぼうはささがき
にし, 水に浸しま
す。

人参は千切りにし
ます。

フライパンにごま
油を熱し、人参を
炒めます。

人参を入れ炒め
ます。

人参を炒め終わっ
たらひじきを入れ
炒めます。

RetAttn 
(half model)

材料を 
用意します。

ごぼうはささがき
にし, 水に浸しま
す。

人参は千切りにし
ます。

フライパンが温ま
ったら、人参を入
れ炒めます。

もやしを入れた
後、人参を入れ
て炒めます。

塩と胡椒で味を
つけます。

RetAttn 
(full model)

材料を用意しま
す。●の調味料を合
わせておきます。

ごぼうはささがき
にし、水にさらし
ておきます。

にんじんは千切り
にします。

フライパンにごま
油を熱し、人参を
炒めます。

人参がしんなりした
ら、ごぼうを入れ
て、全体がしんなり
するまで炒めます。

全体に火が通った
ら、調味料を入れ
て、よく混ぜま
す。できあがり！

Ground Truth ●の調味料を混ぜ
ておきます。

ごぼうは皮を剥いて５
㎝ぐらいの長さで細切
りにし、水にさらして
おきます。

にんじんを細切り
にします。

熱したフライパンにごま油を
ひいてゴボウを炒めます。  
ごぼうに火がとおったらにん
じんを入れて炒めます。

にんじんに火がとおっ
たら①の調味料を入れ
て汁気がなくなるまで
炒めます。

火を止めて、白ごまを
ふりかけて混ぜればで
きあがりです。

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

ごぼう
にんじん

● 砂糖
● 酒

● しょう油

白ごま
● わさび

ごま油

 ごぼう
にんじん

● 砂糖
● 酒

● しょう油

白ごま

● わさび

ごま油

Ingredients ごぼう, にんじん, ● 砂糖, ● 酒, ● しょう油, ● わさび, 白ごま, ごま油

FIGURE 7. (Best viewed in color). This is the Japanese version of the example (Figure 4) in the main paper.
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Merging tree generated by half model Merging tree generated by full model

Models Step 1 Step 2 Step 3

RetAttn 
(baseline)

Boil the spinach with hot water 
and drain it. 
(ほうれん草は塩茹でにし、水気
を切っておく。)

Add sugar, sugar, sugar, and 
salt to the bowl. 
Mix it. 
(ボウルに砂糖、砂糖、砂糖を入
れてよく混ぜる。)

Add step 1’s seasonings to step 
1’s bowl. 
(1の調味料を1に入れる。)

RetAttn 
(half model)

Boil the spinach with hot salted 
water and Cut it into a bite size.  
(ほうれん草は、塩茹でして食べ
やすい大きさに切る。)

Add flour, baking powder, sugar, 
and cocoa into the bowl. Mix it. 
(ボウルに薄力粉とベーキングパ
ウダーとココアを入れて混ぜ
る。)

Add step 1's result to step 2's 
result, and mix them. 
(1を2に入れて混ぜる。)

RetAttn 
(full model)

Boil the spinach with hot salted 
water and cut it into a bite size.  
(ほうれん草は、塩茹でして食べ
やすい長さに切っておく。)

Add butter to the bowl and heat 
them with the microwave. 
Add sugar and mix them well. 
(ボウルにバターを入れ, レンジ
で加熱し, 砂糖を入れよく混ぜ
る。)

Add step 1's result to step 2's 
result, and mix them well. 
(1を2に入れ、よく混ぜる。)

Ground Truth

Wash the spinach and boil it with 
hot salted water to skim the 
foam.   
Drain and cut it into 3-cm 
pieces.  
(ほうれん草は水洗いし塩少々を
加えたお湯で茹でる。水にさら
してアクを抜き, 軽く絞って3cm
くらいの大きさに切っておく。)

Add white sesame, soy sauce, 
and sugar to the bowl. Mix them 
well. 
(ボウルにごま・しょうゆ・砂糖
を入れてよく混ぜる。)

Add the spinach (step 1), and 
mix them while loosening them. 
(水気を切って1のほうれん草を
加え、ほぐしながら炒める。)

Step 1 Step 2 Step 3 Step 1 Step 2 Step 3

Spinach

White sesame

Soy sauce

Sugar

Spinach

White sesame

Soy sauce

Sugar

Ingredients Spinach, White sesame, Soy sauce, Sugar

FIGURE 8. (Best viewed in color). Example of generated recipes and merging trees. The baseline (original), half, and full models are compared with the ground
truth. The half model predicts the merging tree and uses it as the structure of the Child-sum Tree-LSTM. The full model re-predicts the merging tree from the
generated recipe in addition to the modules of the half model. Compared with the baseline model, both proposed models (half and full) generate coherent recipes
by using the referred expressions (e.g., in step 3, they output “add step 1’s result to step 2’s result”).
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Merging tree generated by half model Merging tree generated by full model

Models Step 1 Step 2 Step 3 Step 4

RetAttn 
(baseline)

Mix all ingredients. 
(材料を全て混ぜま
す。)

Cut the pork into 
bite-size pieces. 
(豚バラ肉を食べや
すい大きさに切りま
す。)

Pour the oil and grill 
both sides. 
(フライパンに油を
ひき両面焼きま
す。)

Serve on a plate. 
(お皿に盛ってでき
あがりです。)

RetAttn 
(half model)

Prepare ingredients. 
(材料を用意しま
す。)

Cut the pork into 
bite-size pieces. 
(豚バラ肉を食べや
すい大きさに切りま
す。)

Pour the oil and grill 
both sides. 
(フライパンに油を
ひき、両面を焼きま
す。)

Serve on a plate. 
(お皿に盛ってでき
あがりです。)

RetAttn 
(full model)

Prepare ingredients. 
Mix ★ ingredients. 
(材料を用意しま
す。★の材料を合わ
せておきます。)

Cut the pork into 
bite-size pieces. 
(豚肉は食べやすい
大きさに切りま
す。)

Pour the oil into the 
pan and grill the 
pork. 
(フライパンに油を
熱し豚肉を焼きま
す。)

Put lettuce on a plate. 
Pour the sauce onto it. 
It’s ready to eat. 
(レタスを皿に盛り付け、
上からタレをかけて完成
です。)

Ground Truth
Mix ★ ingredients. 
(★は合わせておき
ます。)

Cut the muscle of the 
pork with the top of the 
knife. Add the salt and 
pepper. 
(豚肉は筋切りをし包丁
の先で全体を刺しま
す。塩コショウを軽く
振ります。)

Pour the oil, grill the 
pork (step 2), and add 
step 1's result to it.  
Mix them well. 
(フライパンに油を熱し
②を焼き肉に火が通っ
たら①を加え肉に味を
絡めます。)

Serve on a plate 
with your favorite 
vegetables. 
(好みの野菜と共に
器に盛ります。)

Step 1 Step 2 Step 3 Step 4

Pork roast steak

Salt and pepper

★Miso
★Sake
★Sweet sake
★Soy sauce
★Garlic paste

★Black pepper
★Fried sesame

Oil

Pork roast steak
Salt and pepper

★Miso
★Sake
★Sweet sake
★Soy sauce
★Garlic paste
★Black pepper
★Fried sesame

Oil

Step 1 Step 2 Step 3 Step 4

Ingredients
Pork roast steak, Salt and pepper, Oil, ★Miso, ★Sake, ★Sweet sake, ★Soy sauce, 

★Garlic paste, ★Black pepper, ★Fried sesame

FIGURE 9. (Best viewed in color). Example of generated recipes and merging trees. The baseline (original), half, and full models are compared with the ground
truth. In step 1, the full model correctly generates a referred expression, whereas the other models do not. All models miss the proper timing for adding the
seasonings in step 3. We assume that the models would predict the merging tree incorrectly. Although they predict that the seasonings from step 1 would connect
with step 4, the seasonings are actually used in step 3.
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Merging tree generated by half model Merging tree generated by full model

Models Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7

RetAttn 
(baseline)

Crack the egg into 
the bowl. Add 
sugar and mix 
well. 
(ボウルに卵を割り
入れ、砂糖を加え
てよく混ぜる。)

Add chocolate 
and mix it. 
(チョコレート
を加えて混ぜ
る。)

Add milk and 
mix it well. 
(牛乳を加えて
混ぜる。)

Add flour and 
mix it well. 
(ふるった薄力
粉を加えて混ぜ
る。)

Add flour and 
mix it well. 
(薄力粉を加え
て混ぜる。)

Put dough into a 
mold. 
Bake it at 180℃ 
for 25 minutes. 
(型を流し入れ、
180℃のオーブ
ンで25分焼く。)

After baking, take it 
out. Bake it at 
180℃ for 25 
minuites. 
(焼きあがったら、
型から取り出し、
180度で25分焼
く。)

RetAttn 
(half model)

Crack the egg 
into the bowl. 
Add sugar, milk 
and sugar. Mix 
well. 
(ボウルに卵を割
りほぐし、砂糖、
牛乳、砂糖を入れ
て混ぜる。)

Add the 
chocolate to 
step 2's result. 
(2にチョコレー
トを入れて混ぜ
る。)

Add milk to 
step 2’s result. 
(2に牛乳を加
え、よく混ぜ
る。)

Add flour and 
mix it with the 
rubber spatula. 
(薄力粉をふる
い入れ、ゴムベ
ラでしっかり混
ぜる。)

Add flour and 
mix it with the 
rubber spatula. 
(ふるっておい
た薄力粉を加
え、ゴムベラで
さっくり混ぜ
る。)

Put dough into a 
mold. 
Bake it at 180℃ 
for 25 minutes. 
(型に生地を入
れ、180℃のオ
ーブンで25分焼
く。)

Finish baking. 
Garnish the 
cocoa. 
(焼き上がり。
ココアを添え
て、完成。)

RetAttn 
(full model)

Crack the egg 
into the bowl. 
Add sugar and 
mix well. 
(ボウルに卵を
割りほぐし、砂
糖を加えてよく
混ぜる。)

Melt the 
chocolate with 
hot water. 
Add milk into the 
bowl. 
(チョコレートを
湯煎で溶かし、
牛乳を入れて溶
かす。)

Add milk to the 
step 2’s result 
and mix it with 
the rubber 
spatula. 
(2に牛乳を加
え、ゴムベラで
混ぜる。)

Add flour and 
mix it with the 
rubber spatula. 
(薄力粉を加えゴ
ムベラでよく混
ぜる。)

Add baking 
powder and mix 
it well. 
(ベーキングパ
ウダーをくわえ
入れよく混ぜ
る。)

Put dough into a 
muffin cup. 
Put on a drained 
cherry. 
Bake them at 180℃ 
for 25 minutes. 
(マフィン型に生地
をいれ、ドランチェ
リーを乗せる。
180℃のオーブンで
25分焼く。)

After baking, 
cool it in the 
fridge. Now it’s 
ready for eat. 
(焼きあがった
ら、冷蔵庫で冷
やして完成。)

Ground 
Truth

Crack the egg 
into the bowl. 
Add sugar and 
mix well. 
(ボールに卵わ
割りほぐし、砂
糖を加えて良く
混ぜ合わせる)

Heat milk in the 
pot. Melt the 
chocolate with it. 
(鍋に牛乳を入れ
て沸騰直前まで
温め、刻んだチ
ョコレートのボ
ールに入れて溶
かす。)

Add the soy 
pulp into the 
step 1’s result. 
Mix it well. 
(1におからを加
え、泡立て器で
良く混ぜ合わせ
る。)

Add step 3's 
result to step 
2's result. 
Mix them well. 
(3に2を少しず
つ加え、よく混
ぜ合わせる。)

Add flour and 
baking powder 
to the step 4’s 
result and mix it 
well. 
(粉類は合わせ
てふるってお
き、4に加えよ
く混ぜる。)

Put dough into a 
muffin cup. Put on 
a drained cherry. 
Bake them at 
180℃ for 25 
minutes. 
(生地はカップに
流し、ドレンチェ
リーを飾り、180
度のオーブンで約
25分焼く。)

If it is firm after 
baking, serve 
on a plate. 
(焼き終わった
ら、触ってみて
弾力があればで
きあがり。)

Egg
Sugar
Chocolate
Milk
Flour
Cocoa
Baking powder
Soy pulp
Drained cherry

Egg
Sugar
Chocolate
Milk
Flour
Cocoa
Baking powder
Soy pulp
Drained cherry

1 2 3 4 5 6 7 1 2 3 4 5 6 7Step Step

Ingredients Egg, Sugar, Chocolate, Milk, Flour, Cocoa, Baking powder, Soy pulp, Drained cherry

FIGURE 10. (Best viewed in color). Example of generated recipes and merging trees. The baseline (original), half, and full models are compared with the ground
truth. The baseline improperly generates duplicate actions (e.g., “Add flour” in steps 4 and 5, and “Bake” in steps 6 and 7). This is suppressed by the proposed
methods, although they each output duplicate actions once: The half model outputs “Add flour” in steps 4 and 5, and the full model outputs “Add milk” in steps 2 and
3). We also emphasize that the full model can verbalize the correct instruction, “Put on a drained cherry,” by using a merging tree estimate, whereas the baseline
and half models do not generate this instruction.

VOLUME 4, 2016 15



Nishimura et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Merging tree generated by half model Merging tree generated by full model
1 2 3 4 5 7

Models Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9

RetAttn 
(baseline)

Peel the 
potatoes and 
cut them into 
1-cm pieces. 
(じゃがいもは
皮をむいて、
1cm幅に切
る。)

Add hot 
water to the 
pot and boil 
it. 
(鍋に水を入
れ、沸騰さ
せる。)

When boiled, 
boiled, boiled, 
simmer it for 10 
minutes. 
(沸騰したら、
沸騰したら、沸
騰したら、10分
ほど煮る 
。)

Rap them 
and heat 
them with the 
microwave. 
(ラップをし
てレンジで加
熱。)

When the 
potatoes are 
tender, simmer 
it for 10 
minutes. 
(じゃがいもが
柔らかくなった
ら、10分煮
る。)

When the 
potatoes are 
tender, add milk 
and mix it. 
(じゃがいもが
柔らかくなった
ら、牛乳を加え
混ぜる。)

Serve on a 
plate. Add 
mayonnaise 
if you like. 
(お皿に盛っ
て、マヨネー
ズをかけて
完成。)

Add the 
butter and 
mix it. 
(バターを加
えて、混ぜ
る。)

Serve on a 
plate. 
(お皿に盛っ
て完成。)

RetAttn 
(half 

model)

Peel the 
potatoes with a 
knife. 
(じゃがいもは
包丁で皮をむ
き、一口大に切
ります。)

Add water into 
the pot and put 
a lid on it. 
(鍋に水を入れ
沸騰したら、弱
火にして蓋をし
ます。)

Simmer it 
for 3 
minutes. 
(蓋をして弱
火で3分ほど
煮ます。)

Peel the 
potatoes with 
the knife. 
(包丁で皮を
むきます。)

When the 
potatoes are 
tender,  crush it 
and add salt. 
(じゃがいもが
柔らかくなった
ら、潰し、塩を
ふっておきま
す。)

Crush the 
potatoes and 
drain them. 
(じゃがいも
を潰して、水
気を絞りま
す。)

Serve on a 
plate and add 
mayonnaise. 
(お皿に盛り付
け、マヨネー
ズを入れま
す。)

After mixing 
well, add 
the butter. 
(よく混ぜて
から、バタ
ーを入れま
す。)

Serve on a 
plate. 
(お皿に盛り
付けてでき
あがりで
す。)

RetAttn 
(full 

model)

Prepare 
ingredients. 
(材料を用意
します。)

Add water 
into the pot, 
and put the 
potatoes to it. 
(鍋に水を入れ
て沸騰したら
じゃがいもを
入れます。)

Skim the 
foam from 
the surface. 
(沸騰したら
アクを取り
ます。)

Peel the hot 
potatoes. 
(皮をむきま
す。)

Add the 
potatoes to 
a bowl. 
(じゃがいも
をボウルに
入れます。)

Crush the 
potatoes 
with a 
masher. 
(柔らかくな
ったら、マ
ッシャーで
つぶす。)

Add 
mayonnaise 
and mix it. 
(マヨネーズ
を入れて、
混ぜます。)

After mixing 
well, add 
potatoes and 
mix them. 
(混ざった
ら、じゃが
いもをいれて
混ぜます。)

Serve on a 
plate. Add 
mayonnaise if 
you like. 
(お皿に盛っ
て、お好みで
マヨネーズを
かけていただ
きます。)

Ground 
Truth

My friend 
gave me the 
potatoes. 
Thank you. 
(友人からい
ただいたじ
ゃがいもで
す。ありが
たいことで
す。)

Add water 
into the pot 
and heat it 
at low heat. 
(水からゆっ
くり弱火で
茹でます。)

Simmer it 
for 40-50 
minutes. 
(40~50分く
らいかけて
茹でます。)

Peel the 
potatoes. 
They are hot, 
thus Keep 
peeling away. 
(皮をむきま
す。熱い！け
ど、ここがふん
ばりどころで
す。)

Remove the 
eyes of the 
potatoes. 
(芽もとりま
す。)

Crush them to 
a certain 
extent. 
(ある程度潰し
て)

Add 
mayonnaise, 
salt, and 
pepper to it. 
(マヨネーズ、
塩、胡椒。)

Mix it well and 
it’s ready to eat. 
Add water or 
milk if you like. 
(まぜまぜして
出来上がりで
す。少し水か牛
乳かを入れてし
っとりさせても
よいでしょ
う。)

Serve on a 
plate. 
(盛り付けま
す。)

6 8 9 1 2 3 4 5 76 8 9

Potatoes

Mayonnaise

Salt

Pepper

Potatoes

Mayonnaise

Salt

Pepper

Step Step

Ingredients Potatoes, Mayonnaise, Salt, Pepper

FIGURE 11. (Best viewed in color). Example of generated recipes and merging trees. The baseline (original), half, and full models are compared with the ground
truth. This example has a large number of steps. Therefore, generating the recipe correctly requires the models to understand a long context dependency. The
baseline model tends to generate improper actions, because it can not understand the long workflow of the recipe (e.g. “rap,” “heat,” “simmer,” “add,” “mix,” and
“serve” from step 4 to step 6). By contrast, the half and full models generate the recipe with the actions in the correct order, to a certain extent. Comparing these
models with each other, the full model generates actions suitable for the images, whereas the half model generates duplicate actions (e.g., “crush” in steps 5 and 6).
Moreover, the full model generates the instruction, “Add mayonnaise if you like,” which is suited to the image but does not appear in the ground truth. This is
achieved because the model fully uses the image feature.
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