
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Recipe Generation from
Unsegmented Cooking Videos

Taichi Nishimura, Atsushi Hashimoto, Member, IEEE, Yoshitaka Ushiku, Member, IEEE,
Hirotaka Kameko, and, Shinsuke Mori

Abstract—This paper tackles recipe generation from unseg-
mented cooking videos, a task that requires agents to (1) extract
key events in completing the dish and (2) generate sentences for
the extracted events. Our task is similar to dense video captioning
(DVC), which aims at detecting events thoroughly and generating
sentences for them. However, unlike DVC, in recipe generation,
recipe story awareness is crucial, and a model should output
an appropriate number of key events in the correct order. We
analyze the output of the DVC model and observe that although
(1) several events are adoptable as a recipe story, (2) the generated
sentences for such events are not grounded in the visual content.
Based on this, we hypothesize that we can obtain correct recipes
by selecting oracle events from the output events of the DVC
model and re-generating sentences for them. To achieve this, we
propose a novel transformer-based joint approach of training
event selector and sentence generator for selecting oracle events
from the outputs of the DVC model and generating grounded
sentences for the events, respectively. In addition, we extend
the model by including ingredients to generate more accurate
recipes. The experimental results show that the proposed method
outperforms state-of-the-art DVC models. We also confirm that,
by modeling the recipe in a story-aware manner, the proposed
model output the appropriate number of events in the correct
order.

Index Terms—Cooking Recipe Generation, Video Understand-
ing, Natural Language Generation

I. INTRODUCTION

With a rapid increase of cooking videos uploaded on the
web, multimedia food computing has become an important
topic [1], [2], [3], [4], [5], [6]. Among various developing
technologies, recipe generation from unsegmented cooking
videos [7] is challenging. It requires artificial agents to (1)
extract key events that are essential to dish completion and (2)
generate sentences for the extracted events. This task is impor-
tant for both scene understanding and real-world applications.
In terms of scene understanding, (1) and (2) are recognized as
temporal event localization [8], [9] and video captioning [10],
[11], [12], respectively, and learning both simultaneously is
an ambitious challenge in computer vision (CV) and natural
language processing (NLP). Meanwhile, from a perspective
of real-world applications, this technology can support people
learning new skills by providing key events and their expla-
nation sentences as a multimedia summarization of cooking
videos. These academic and industrial motivations impel us to
tackle recipe generation from unsegmented cooking videos.

Our task is similar to dense video captioning (DVC) [13],
[14], [15], which aims at detecting events densely from videos
and generating sentences for them. Although the input/output
pairs of our task (video/(events, sentences)) and that of the

Existing
DVC

Model

Our Task
Input Video

Event Candidates
(N=10)

Our
Model

T

…

…

1 Add the butter
into a pan

3

Crack the eggs
and stir

Add the egg mixture
and cheese and stir

2

Fig. 1. Concept overview of our approach. Based on the output events from
existing DVC models, the proposed method selects events that are suitable as
a story of recipes and generates sentences grounded with the extracted events.

DVC are of the same format, our task is different from the
perspective of the recipe’s story awareness. DVC allows agents
to exclusively detect false-positive events in its evaluation
metrics; our task, on the other hand, requires them to extract
the accurate number of key events in the correct order. Fujita
et al. [16] reported that DVC models produced more than
200 redundant events per video on average on the ActivityNet
captions dataset [13] while the number of manually-annotated
events is only 3-4. Such redundant events and sentences make
it difficult for users to grasp an overview of the video content.

Although the events predicted by DVC models are redun-
dant, we observed that (1) several events are adoptable as a
story of a recipe, but (2) the generated sentences for such
events are not grounded well to the visual contents (i.e.,
ingredients and actions in the sentences are incorrect). We
confirm this by analyzing the outputs of the state-of-the-art
DVC model. We refer to the DVC output events as event
candidates. Through an approach that we refer to as oracle
selection, we select events that have the maximum temporal
IoU (tIoU) to ground-truth events (i.e., manually-annotated
events) and compute the DVC scores [16], [13]. The results
support our observations. Although oracle selection ensures
that events that are adoptable as the story of a recipe are
selected, the obtained sentences are not grounded in the visual
content.

Our task requires models to predict the next step for the
story of a recipe by memorizing previously predicted events
and generated sentences. For example, in Fig. 1, to generate
“egg mixture” in step 3, the models should memorize the
visual and textual content of step 2. Existing DVC approaches
do not consider them explicitly; thus they miss or hallucinate
ingredients (e.g., say ingredients that do not appear in the
video), resulting in performance degradation. Based on this,
our hypothesis is that we can obtain correct recipes by select-

ar
X

iv
:2

20
9.

10
13

4v
1

 [
cs

.M
M

]
 2

1
Se

p
20

22

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

ing oracle events from the event candidates and re-generating
sentences for them (Fig. 1).

To achieve this, we propose a novel transformer[17]-based
joint learning approach of an event selector and sentence gen-
erator. The event selector selects oracle events from the event
candidates in the correct order, and the sentence generator
generates a recipe that is grounded with the events. Both of
the modules have memory representations as with [10], which
enables the model to predict the accurate number of events in
the correct order by remembering previously selected events
and generated sentences. Moreover, the model is designed to
be trainable in an end-to-end manner because the modules
of the model are connected without breaking a differentiable
chain. We refer to this model as the base model.

We also propose an extended model that can generate more
accurate recipes in the settings where the inputs are videos
with ingredients as in [12], [18]. The task requires agents to
describe detailed manipulations of ingredients from cooking
videos. To achieve this goal, our extended model has two
additional modules: (1) a dot-product visual simulator and (2)
a textual attention module. The dot-product visual simulator
is introduced by the insights from our previous work [12],
where we discovered that the manipulations change the state
of the ingredients, yielding state-aware visual representations.
In Fig. 1, “eggs” are transformed into “cracked” then “stirred”
form to cook scrambled eggs. To address this, we introduced
the visual simulator, which reasons about the state transition of
ingredients, into the model. The motivation of the extension is
the difference in the inputs. Although in our previous work, the
inputs are pre-segmented ground-truth events with ingredients,
the inputs in this work are event candidates. The dot-product
visual simulator accepts them and reasons about the state
transition of ingredients. Furthermore, we also introduce a
textual attention module that verbalizes grounded ingredients
and actions in the recipes. These modules are effective for
grounded recipe generation from cooking videos.

In our experiments, we use the YouCook2 [8] dataset,
which contains 2,000 videos with event/sentence annotation
pairs. The proposed method outperforms the state-of-the-art
DVC approaches based on commonly used DVC metrics. In
addition, the extended models boost the model’s performance.
We also show that the proposed models can select the correct
number of events that effectively reflects the ground-truth
events. In addition, our qualitative evaluation reveals that the
proposed approaches can select events in the correct order and
generate recipes grounded in the video contents. We discuss
the detailed experiment settings for optimal recipe generation.

II. RELATED WORK

In this section, we describe the novelty of the proposed
method in line with other works on recipe generation from vi-
sual observations (Section II-A) and general video captioning
(Section II-B).

A. Recipe generation from visual observations

Recipes are a popular target in the NLP community because
they require artificial agents to generate coherent sentences

[19], [20]. The inputs of these works are the title and ingredi-
ents of recipes. Recently, many multimodal cooking datasets
have appeared [1], [21] and recipe generation from images
has also been proposed [2], [5]. Salvador et al. [2] tackled
this problem using a transformer-based model [17] to generate
high-quality recipes from a single image of a completed dish.
Other researchers focus on generating a recipe from an image
sequence depicting the intermediate food states [22], [23],
[24].

The essential limitation of generating recipes from images
is the lack of detailed, continuous scene information of human
manipulations, which images do not contain. Hence, this
task is essentially an ill-posed problem; that is, it depends
on the obtained language model to generate correct actions.
Meanwhile, videos contain this information and have been
attracting the attention of many researchers in recent years
[12], [18], [7], [11]. As described in Section I, this task
requires agents to (1) extract key events from videos and
(2) generate grounded sentences for events. Most researchers
have focused on (2) generating grounded recipes from pre-
segmented key events [12], [11], [18]; only few researchers
attempt to learn both (1) and (2) to generate recipes from
unsegmented videos. Shi et al. [7] are pioneer researchers that
have tackled this problem by utilizing the narration of videos
effectively. Although this approach is effective for narrated
videos, transcription is not always available for all cooking
videos. Speaking during cooking or adding narration to videos
requires significant effort. In addition, narrations may lead the
model to attend to textual features, ignoring the visual features
of videos. Our task extends their work to generate recipes only
from videos. This enables the model to treat even non-narrated
videos and be more useful than the previous setting.

B. Video captioning
Video captioning is an attractive field for both CV and

NLP communities. The task settings of video captioning vary
according to the nature of the input video (e.g., one short event,
pre-defined key events, or long unsegmented video). Our aim
is to extract key events and generate sentences simultaneously
from long unsegmented videos. This task is similar to DVC
because the input/output pairs are in the same format as in our
task. We first describe traditional DVC approaches and then
enumerate the difference between DVC and our task.

DVC aims at densely detecting events from the video and
generating sentences for them. Recently, transformer-based
approaches are well investigated for this task. Zhou et al. [25]
proposed a Masked Transformer, which detects events and
generates sentences via a differentiable mask in an end-to-
end manner. Their approach, however, outputs more than 200
redundant events per video on average [16]. To handle this
issue, Wang et al. [14] proposed PDVC, which detects events
in parallel, re-ranks the top K (K is also the prediction
target), and generates sentences for the re-ranked events. Deng
[15] proposed a top-down DVC approach, whereby whole
sentences generated for the video are aligned into timestamps,
based on which the sentences are refined.

The key difference between our task and DVC lies in the
story awareness of recipes. Our task requires agents to extract

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

TABLE I
WORD-OVERLAP METRICS OF THE ORACLE SELECTION ON THE

YOUCOOK2 DATASET. N REPRESENTS THE NUMBER OF CANDIDATE
EVENTS, A HYPER-PARAMETER OF PDVC. THE BOLD SCORES ARE THE

BEST AMONG THE COMPARATIVE SETTINGS.

dvc eval SODA
BLEU METEOR CIDEr-D METEOR CIDEr-D tIoU

PDVC (reproduced) 0.89 4.52 21.50 3.98 25.30 27.80
Oracle
N=25 0.58 6.09 27.12 7.62 26.32 56.55
N=50 0.84 6.92 31.63 8.83 29.93 64.58
N=100 0.97 7.68 36.26 9.64 35.08 71.16
N=200 1.10 8.15 38.60 10.43 36.89 76.71

0

1000

2000

3000

4000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(a) Training

(b) Validation

0

300

600

900

1200

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N=25 N=50 N=100 N=200

Fig. 2. tIoU distribution of oracle events on the training and validation sets
of YouCook2.

an appropriate number of events in the correct order. DVC
allows a model to detect events densely; however, redundant
event/sentence pairs impede readability, and users are unable
to grasp an overview of the video contents. To achieve story
awareness, we propose a transformer-based joint learning
approach of an event selector and sentence generator based
on our observation that oracle events can be selectable from
the output events of a DVC model.

III. ORACLE-BASED ANALYSIS OF THE EXISTING DVC
MODEL

As Fujita et al. [16] reported, the outputs of DVC models
are redundant. However, we observed that although (1) several
events are adoptable as a story of a recipe, (2) the generated
sentences for such events are not grounded well in the visual
contents. To verify this, we analyze the outputs of the state-
of-the-art DVC model. Specifically, we select events with the
maximum tIoU scores to ground-truth events from event candi-
dates and compute the DVC scores, an approach referred to as
oracle selection hereinafter. The analyzed results demonstrate
that the oracle selection boosts the performance, especially on
story-oriented DVC metrics.

We use the YouCook2 dataset [8], one of the largest cooking
video-and-language datasets. For the DVC model, we employ
PDVC [14], the state-of-the-art DVC model. It detects N
events densely and then re-ranks the top K of them for its
outputs. Note that N is a hyper-parameter1 and K is the
prediction target. We adopt this model because it achieves the

1N is set to be a sufficiently large number. For YouCook2, the authors of
[14] set N to be 100 as a default parameter.

best performance on DVC tasks and it is easy to control N
before training the model. We use the N detected events for
the analysis, not the re-ranked K events.

Evaluation metrics. We use two commonly-used DVC
metrics: dvc eval [13] and SODA [16].

• dvc eval firstly computes tIoU of all the combinations
between the prediction and ground-truth events, and
then computes word-overlap metrics (e.g., METEOR or
CIDEr-D), if the tIoU scores are over the threshold θ. θ
ranges from 0.3 to 0.9 by 0.2. Their average is the output
score of these metrics.

• SODA stands for story-oriented dense video captioning
evaluation, whereby the story awareness of the output
events is evaluated. Specifically, it uses dynamic program-
ming to explore an alignment of events between predic-
tion and ground-truth for obtaining the maximum story
scores. The story scores are computed as a product of
tIoU and word overlap metrics. Because SODA evaluates
the predicted events by penalizing redundant outputs, it
is suitable for computing the story awareness of recipes.

SODA evaluates whether the output event/sentence pairs are
appropriate as a story; thus, it is rated above dvc eval in this
study. As word-overlap metrics, we use BLEU [26], METEOR
[27], and CIDEr-D [28], which are commonly-used metrics for
text generation tasks. We also introduce SODA tIoU, which
computes story scores as tIoU scores, rather than a product of
tIoU and word overlap metrics. These metrics can evaluate
whether the selected events are appropriate as components
of the generated recipes. In this analysis, we range N from
25, 50, 100, and 200.

A. Quantitative evaluation

Table I shows the results of the oracle selection on dvc eval
and SODA metrics, indicating that the oracle selection outper-
forms the PDVC. Specifically, the SODA scores of the oracle
selection are quite better than that of the PDVC, demonstrating
that the generated recipes are more suitable as a story than the
ones generated by the PDVC.

Fig. 2 shows the distribution of tIoU scores of the oracle
events on training and validation sets. The number of candidate
events N was directly proportional to the average tIoU. This
is because the more N was, the more suitable oracle events
appear in the candidate. Both the training and validation sets
confirm this tendency.

B. Qualitative evaluation

Fig. 3 shows a comparison of the recipes generated by
the oracle selection and ground truth. The selected event
timestamps are close to the ground-truth events, indicating
that the appropriate selection can construct the correct recipes.
However, the sentences differ from the ground truth, the
ingredients, especially, are different from the ground truth
(e.g., “baking soda”, “salt”, and “pepper” are missing in step
(1)).

The main reason for this error is that the model does
not consider previously predicted events and sentences. This

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

… … …

Oracle Selection

Time

…

Ground-Truth

Oracle SelectionGround-Truth
(a)Add flour eggs baking soda salt and

pepper to the bowl and stir
(b)Add cold water to the bowl and stir
(c)Cover the shrimp in the batter and

breadcrumbs
(d)Place the shrimp into a pan of hot oil
(e)Remove the shrimp from the pan

(a)Add flour and mix to a bowl and mix
(b)Mix the ingredients in the bowl
(c) Place the chicken in the batter
(d)Fry the chicken in the oil
(e)Remove the soup from the oil

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

Fig. 3. Comparison of the recipes generated by the oracle selection and
ground truth. N = 100, which is a default hyper-parameter of PDVC, is used
in this example.

causes the model to miss or hallucinate ingredients and moti-
vates us to propose a model that re-generates sentences for the
predicted events, rather than using the corresponding generated
sentences without modification.

IV. PROPOSED METHOD

Based on the oracle-based analysis, we hypothesize that we
can obtain correct recipes by selecting oracle events from the
output events of the DVC model and re-generating sentences
for them. Our task requires models to predict the next step
for the story of a recipe by memorizing previously predicted
events and generated sentences. To achieve this, we propose a
joint learning approach of event selection module and sentence
generation module (Fig. 4), which are memory-augmented
recurrent transformers [10]. The event selection module and
sentence generation module are referred to as event selec-
tor and sentence generator, respectively. The event selector
chooses oracle events from event candidates repeatedly and the
sentence generator outputs sentences for the selected events.
The memories are updated to remember the history of the
outputs (selected events/generated sentences) and used in the
next steps.

We formulate this task using notations. Let X =
(x1,x2, . . . ,xn, . . . ,xN) ∈ R2×N be event candidates, where
xn consists of start and end timestamps. Note that X
is sorted on the start time of the events in chronologi-
cal order. Given X , the model generate pairs (C,Y) =
((c1,y1), . . . , (ct,yt), . . . , (cT ,yT)), where ct, yt, and T rep-
resent an index of the oracle event candidates, corresponding
generated sentences, and the number of the selected events,
respectively. The memories V l

t in the event selector and Sl
t

in the sentence generator are updated at each t step, where l
represents the layer number of transformers.

A. Event selector

The event selector can be divided into two main compo-
nents: event encoder and event transformer. The event encoder
converts given candidate events X into event-level represen-
tations E = (e1, e2, . . . , en, . . . , eT), based on which the

event transformer outputs a holistic representations of events
H = (h1,h2, . . . ,hn, . . . ,hT). They are used for computing
event probabilities, which represent the likelihood of oracle
events. We apply Gumbel softmax resampling [29] to select
events and forward them to the sentence generator without
breaking a differentiable chain during the training phase. In
the inference phase, events are deterministically selected by
applying argmax to event probabilities.

Event encoder. The event encoder converts events xn into
representations en. First, we extract event clips from the video,
according to the start and end time of xn, and input them into
pre-trained visual encoders. One of the straightforward ways to
encode events is to average frame-level image representations
extracted by ResNet [30]. However, we find that this approach
is unable to capture fine-grained event semantics for over-
lapped events. For example, assuming that the ground-truth
event is a scene of cutting potatoes, and the event candidates
have two scenes, where one is a scene of cutting potatoes
and tomatoes, and another is of cutting only potatoes. We
expect the model to select the latter scene because the former
contains extra information of cutting tomatoes. Representing
events based on the average of frame-level features cannot
capture the semantic difference of these events effectively.
Thus, it is necessary to employ an event encoder that focuses
on extracting fine-grained event-level semantics.

To achieve this, we focus on multiple instance learning-
noise contrastive estimation (MIL-NCE) model [31] pre-
trained on Howto100M [32]. The model is trained on more
than 100M pairs of an event with narration, and it can
capture event-level semantics of overlapped events. Using
this encoder, we obtain event-level representations as E =
(e1, e2, . . . , en, . . . , eT). Then, the positional encoding (PE)
[17] and relative encoding of events [33] are added to en.

Event transformer. Given E, the event trans-
former outputs holistic representations of events
H = (h1,h2, . . . ,hn, . . . ,hT). This module is based
on the memory-augmented recurrent transformer [10],
where each l layer has the memories V l

t to remember
the history of the selected events. The output vectors
H = (h1,h2, . . . ,hn, . . . ,hT) and memories V l

t are used to
compute n-th event probability p(ct = n|V l

t,X) as follows:

V t = max(V 1
t , . . . ,V

l
t, . . . ,V

L
t), (1)

p(ct = n|V l
t,H) =

exp {(ht
n)

TV t}∑
i exp {(h

t
i)

TV t}
, (2)

where max(·) represents an element-wise max-pooling of
vectors. During training, the event selector selects events
through a Gumbel softmax resampling [29], which enables us
to train the model in an end-to-end manner without breaking a
differentiable chain. This indicates that the loss computed on
the sentence generator is backpropagated to the event selector.
During inference, the model selects event index based on the
argmax of p(ct = n|V l

t,H).

B. Sentence generator
Based on the selected event representations, the sentence

generator outputs sentences grounded for them. Let the se-
lected event index be ĉt, and the selected event representation

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

… …

Event encoderEvent
End token

[END]

Positional
Encoding

+

Multi-head
Attention

Add & Norm

Feed Forward

× N

Q K V

Feed Forward

Add & Norm

ConcatVl
t−1 Vl

t

[END]

Event
Transformer

Event Selector Sentence Generator

Multi-head
Attention

(Shifted right)

Word embedding

Positional
Encoding

Selected
Event Vector

Masked Multi-head
Attention

Add & Norm

Feed Forward

× N

Q K V

Feed Forward

Add & Norm

Concat

Sentence
Transformer

Multi-head
Attention

Linear

Softmax

Sl
t−1

add cold water
to the bowl…

Sl
t

Next
step

Next
step

e1 e2 e3 e4 e5 e6 e7 e8 e9

h1 h2 h3 h4 h5 h6 h7 h8 h9

w1 w2 w3 w4 w5 w6

Timestamp
Encoding TE h5 +

Fig. 4. Joint learning approach of the event selector and sentence generator for recipe generation from unsegmented cooking videos. The event selector
chooses oracle events from event candidates repeatedly and the sentence generator outputs sentences for the selected events. The memories are updated to
remember the history of the outputs (selected events/generated sentences) and are used in the subsequent steps.

can be written as hĉt . This vector is added to the word
vectors W = (w1,w2, . . . ,wk, . . . ,wK) from the word
embedding layer, which is the concatenated neural networks of
the pre-trained global vectors for word representation (GloVe)
[34]2 and one-layer perceptron with ReLU activation. We
also add PE to word vectors W and input them into the
sentence transformer, another memory-augmented recurrent
transformer. The model generates words repeatedly by apply-
ing softmax and argmax operations to the output vectors of
the sentence transformer.

C. Memory update

The memory modules in the event and sentence transformers
V l

t,S
l
t can be separately updated, according to the memory

update equation given in the original paper [10]. However,
intuitively, mixing memories is effective for coherent recipe
generation because the history of the selected events con-
tributes to recipe generation and vice versa. To achieve this,
we update the memory modules by mixing them as follows:

V̂ t = f1(V t)� σ(g2(g1(St))), (3)
Ŝt = g1(St)� σ(f2(f1(V t))), (4)

where f∗(·), g∗(·) represents a single linear layer and �, σ
represents the Hadamard dot product and sigmoid function,
respectively. The obtained V̂ t and Ŝt are forwarded into the
next t+ 1 step.

2We employ pre-trained 300D word embedding, which can be downloaded
from http://nlp.stanford.edu/data/glove.6B.zip

D. Loss functions

To train the model in an end-to-end manner, we sum up two
types of losses: event selection loss and sentence generation
loss. These losses are formulated as a negative log-likelihood
of the event selection and sentence generation tasks as follows:

Ltotal = Le + Ls, (5)

Le = −
∑

(X ,C)

∑
t

log p(ct|X,V l
<t), (6)

Ls = −
∑

(X ,C,Y)

∑
t

log p(yt|hĉt ,S
l
<t), (7)

where Ltotal, Le, and Ls represents the total, event selection,
and sentence generation losses, respectively.

V. EXTENDED MODEL

In addition to the base model, we also propose an extended
model that can generate more grounded recipes in the settings
where the inputs are videos with ingredients, as in [12], [18].
This task requires agents to describe detailed manipulations of
ingredients from cooking videos.

To achieve this goal, our extended model has two additional
modules: (1) dot-product visual simulator and (2) textual
attention module (Fig. 5). The dot-product visual simulator is
introduced based on the insights from our previous work [12].
In our previous work, we discovered that the manipulations
change the state of the ingredients, yielding state-aware visual
representations. For example, “eggs” are transformed into
“cracked,” then “stirred” form to cook scrambled eggs. To
address this, we introduced the visual simulator into the

http://nlp.stanford.edu/data/glove.6B.zip

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

… …

Event encoderEvent
End token

[END]

Positional
Encoding+

Multi-head
Attention

Add & Norm

Feed Forward

× N

Q K V

Feed Forward

Add & Norm

ConcatVl
t−1 Vl

t

Event
Transformer

Event Selector Sentence Generator

Multi-head
Attention

(Shifted right)

Word embedding

Positional
Encoding

Selected
Event Vector

Masked Multi-head
Attention

Add & Norm

Feed Forward

× N

Q K V

Feed Forward

Add & Norm

Concat

Sentence
Transformer

Multi-head
Attention

Linear

Softmax

Sl
t−1

add cold water
to the bowl…

Sl
t

Next
step

Next
step

e1 e2 e3 e4 e5 e6 e7 e8 e9 w1 w2 w3 w4 w5 w6

Timestamp
Encoding TE

h5Concat

Ingredients

Dot-product
Visual simulator

Ingredients

+
Concat

+

Textual Attention Module

Next
step

…

Updated ingredients

…

Weighted actions

gt1

gt
M

·a1
h

Ingredient encoder Ingredient encoder

Flour
Baking soda

Shrimp
…

Batter

Flour
Baking soda

Shrimp
…

Batter

[END] h1 h2 h3 h4 h5 h6 h7 h8 h9 ·a2
h

·aR
h

gt2

Fig. 5. Overview of the extended model for recipe generation from unsegmented cooking videos. To generate more accurate recipes, it has additional two
modules: (1) dot-product visual simulator and (2) textual attention. The dot-product visual simulator is introduced by the insights based on our previous work
[12] to learn the state transition of ingredients. The textual attention module encourages the sentence generator to verbalize actions and ingredients more
accurately.

event vectors

-th material
vector

(n − 1)

gn−11

action vectors

add
crack
stir

h1
h2
h3
h4
h5

a1
a2
a3

(1) Action selector

Event-action
Attention
eq. (9)

(2) Ingredient selector

Event-ingredient
Attention
eq. (11)

Ingredient-event
Attention
eq. (10)

(3) Updater

Action-ingredient
Attention
eq. (12)

·Ha

̂e1

̂e2

̂e3

Next step

·Ah

Ĝt−1
h

A

H

Gt−1

oracle
event

gn−12

gn−13

Action-event
Attention
eq. (8)

Computing
event probability

eq. (2)

·Hg

Gt

Computing
event probability

eq. (2)

Fig. 6. Overview of the extended dot-product visual simulator that reasons
about the state transition of ingredients. It has three components: (1) action
selector, (2) ingredient selector, and (3) updater. The dot-product attention is
employed to treat the event candidates.

model, which reasons about the state transition of ingredients.
Although pre-segmented ground-truth events with ingredients
are regarded as input in our previous work, they are considered
event candidates with ingredients in this study. Thus we extend
it to the dot-product visual simulator described in Section V-A.
In addition, we also introduce a textual attention module that
verbalizes grounded ingredients and actions in the recipes.
These modules are effective for grounded recipe generation
from cooking videos.

Another extension is to add an ingredient encoder to convert
ingredients into representations G0. The ingredient encoders

are concatenated neural networks of pre-trained GloVe [34]
word embedding and multi-layer perceptrons (MLPs) with
ReLU activation function and are added to the event selec-
tor and sentence generator without sharing their parameters.
Multi-word ingredients (e.g., parmesan cheese) are represented
by the average embedding vector of the words. They are
concatenated with event/word representations and inputted to
the event/sentence transformers as shown in Fig. 5.

A. Dot-product visual simulator

We first revisit the original visual simulator and then de-
scribe how we extend it to the dot-product visual simulator.

Visual simulator revisit. In the original study, the inputs
are the pairs of ingredients and ground-truth events. Let G0 =
(g0

1, g
0
2, . . . , g

0
m, . . . , g

0
M) and Ĥ = (ĥ1, ĥ2, . . . , ĥt̂, . . . , ĥT̂)

be the ingredient and ground-truth event vectors encoded
by ingredient encoder (e.g., GloVe) and event encoder (e.g.,
MIL-NCE), respectively. Given (G0, Ĥ), the visual simulator
reasons about the state transition of the ingredients by updating
them at each t̂-th step. To this end, it consists of three
components: (1) action selector, (2) ingredient selector, and
(3) updater. The action selector and ingredient selector predict
executed actions and used ingredients at t̂-th step. Based
on the selected actions/ingredients, the (t̂ − 1)-th ingredient
vectors G(t̂−1) are updated into t̂-th new proposal ingredient
vectors G(t̂), which are forwarded into the next step. The
visual simulator recurrently repeats the above process until
processing the end element of the ground-truth events.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Proposed extension. The proposed model is similar to the
visual simulator because it also has the same three components
to update the ingredient vectors. However, instead of the
ground-truth event vectors Ĥ , the event candidates H are
assumed to be the inputs in this study, that is, the model needs
to predict not only the actions/ingredients but also the events
that constitute the recipe story.

To achieve this, we extend the visual simulator into the
dot-product visual simulator shown in Fig. 6. It computes the
relationships between action-to- and ingredient-to-events as
attention matrices and outputs four vectors: action-weighted
and ingredient-weighted event vectors, event-weighted action,
and ingredient vectors. The former two vectors are used to
calculate the event probabilities and the latter two vectors are
forwarded to the textual attention module.

(1) Action selector outputs event-weighted action and
action-weighted event vectors by predicting the executed ac-
tions and related events. Let the action vectors be A =
(a1,a2, . . . ,ar, . . . ,aR), that is, the pre-defined action em-
bedding, where ar represents r-th actions and R is the number
of the actions. In Fig. 6, the actions “crack” and “stir” are
executed at the oracle event h3; thus a∗ that corresponding
crack and stir indices should be selected with the relation to
h3. This computation can be formulated as the dot-product
attention as follows:

Ȧh = { (W
Q
a A)(WK

h H)T√
d

}(W V
h H), (8)

where WQ
a ,W

K
h ,W

V
h represents a linear layer and d rep-

resents the dimension size of A and H3. We also acquire
action-weighted event vectors Ḣa as follows:

Ḣa = {
(WQ

hH)(WK
a A)√

d
}(W V

a A), (9)

where WQ
h ,W

K
a ,W

V
a represents a linear layer.

(2) Ingredient selector outputs the event-weighted ingre-
dient and ingredient-weighted event vectors by predicting the
ingredients used and related events. For example, in Fig. 6,
the raw “eggs” should be selected at h3. This computation is
achieved by replacing A with Gt−1 in Eq (8) and Eq (9) as
follows:

Ĝ
t−1

h = {
(WQ

g G
t−1)(WK

h H)T
√
d

}(W V
h H), (10)

Ĥg = {
(WQ

hH)(WK
g Gt−1)

√
d

}(W V
g G

t−1), (11)

where WQ
g ,W

K
g ,W

V
g represents a linear layer.

(3) Updater represents the state transition of the ingredients
by updating the ingredient vectors Gt−1. Based on the selected
actions and ingredients (Ȧh, Ĝ

t−1

H), the updater computes the
dot-product attention as follows:

Gt = Gt−1 + Ĝ
t−1

h � repeat(max(Ȧh)), (12)

where repeat(·) expands the max-pooled action vector by
repeating it M times (M is the number of ingredients).

3The dimension size of A is set to be equal to H .

Visual simulator loss

Oracle events (index=3)

Ground-truth sentence

h1 h2 h3 h4 h5

Crack the eggs and stir it in a bowl

eggs are
used

at event 3

Ingredient label

Ingredient-event
attention matrix

Eq. (10)

Ingredient
selection

loss

Action label

Crack and
Stir are

executed
at event 3

Action-event
attention matrix

Eq. (8)

Add

Crack

Stir

Action
selection

loss

Textual attention loss

Crack

the

eggs

and

stir

Sentence
Transformer

…

Add Crack Stir

Crack
the

eggs
and
stir

Crack
the

eggs
and
stir

Word-action
attention matrix

Eq. (15)

Word-ingredient
attention matrix

Eq. (13)

Action label

Ingredient label
Ingredient
attention

loss

Action
attention

loss

Fig. 7. Overview of loss computation of visual selector loss and textual
attention loss.

Output representations. The action- and ingredient-
weighted event representations (Ḣa, Ḣg) are used to compute
the event probability by replacing H with Ḣ = H+Ḣa+Ḣg

in Eq (2). The event-weighted action vectors Ȧh and updated
ingredients Gt are forwarded to the textual attention module.
Gt is also set to be the ingredient vectors at (t + 1)-th
prediction.

B. Textual attention

The textual attention module encourages the sentence gen-
erator to output a recipe grounded with the events based on the
actions and ingredients. Let ŵk be the k-th output word vector
from the sentence transformer. Given (Gt, Ȧh) and ŵk, the
textual attention module computes two attention matrices: (1)
word-action attention and (2) word-ingredient attention. Then
it outputs the context vectors ûk as follows:

αm
k =

exp{(ŵk)
TW g

ug
t
m}∑

j exp {(ŵk)TW
g
ug

t
j}
, (13)

ug
k =

∑
m

αm
k gt

m, (14)

αr
k =

exp{(ŵk)
TW a

uȧ
r
h}∑

j exp {(ŵk)TW
a
uȧ

j
h}
, (15)

ua
k =

∑
r

αr
kȧ

r
h, (16)

ûk = concat(ŵk,u
g
k,u

a
k), (17)

where W g
u,W

a
u represents a linear layer and concat(·) in-

dicates a concatenation function of vectors. ûk is forwarded
to the linear layer and softmax activation to obtain the word
probability across the vocabulary.

C. Loss functions

In addition to the losses described in Section IV-D, we
introduce the following two types of loss functions: (1) visual

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

simulator loss Lvsim and (2) textual attention loss Ltattn. Fig.
7 shows an overview of the loss computation for these two
losses.

(1) Visual simulator loss aims to train the visual simulator,
consisting of two losses: (1) ingredient selection loss and
(2) action selection loss. Given the action- and ingredient-
event attention matrices in Eq (8) and Eq (10), they are
computed as the summed negative log-likelihood based on the
ingredients/actions and events that constitute the recipe story.

To avoid costly human annotations, we compute the loss
through distant supervision [35] following our previous work.
For the ingredient selection loss, labels are obtained whether
the sentence corresponding ground-truth event contains ingre-
dients and the events are oracle or not at each step. For the
action selection loss, labels are obtained whether the sentence
has actions in the 384 actions defined by [36] and the events
are oracle or not at each step. For example, in Fig. 7, “eggs”
at the event index of 3 is extracted as an ingredient label, and
“crack” and “stir” are extracted at the same event index as an
action label.

(2) Textual attention loss aims to train the textual attention,
consisting of two losses: (1) ingredient attention loss and
(2) action attention loss. Given the word-ingredient/action
attention matrices in Eq (13) and Eq (15), they are computed
as the sum of the negative log-likelihood based on whether
the k-th word is the same as the ingredients/actions.

Total loss. We simply add these losses to the loss defined
in Section IV-D as follows:

Lextended = Ltotal + Lvsim + Ltattn. (18)

VI. EXPERIMENTS

We use the YouCook2 dataset [8], which consists of 2,000
cooking videos from 89 recipe categories. All of the videos
have 3–16 clips with a human-annotated start/end timestamp,
and each clip is also annotated with an English sentence.
The average length of videos is 5.27 minutes per video.
The original YouCook2 dataset does not contain ingredient
annotations, thus we use the YouCook2-ingredient dataset
[12], which contains additional ingredient annotations. The
dataset also contains 1,788 videos with events, sentences,
and ingredients. We use the official split proposed by [8] for
evaluation. Because the test set is not available online, we use
the validation set for evaluation.

Event encoder. We employ different two encoders de-
scribed below:

• TSN [37] converts the appearance and optical flow into
frame-level representations, and then outputs the event-
level representations by averaging them. For appear-
ance, we use 2,048D feature vectors extracted from the
“Flatten-673” layer in ResNet-200 [30]. For the optical
flow, 1,024D feature vectors extracted from the “global
pool” layer in BN-Inception [38]. Note that these models
are pre-trained on only vision resources (e.g., ImageNet
[39]).

• MIL-NCE [31] converts the events into representations.
The model is pre-trained on Howto100M [32], which
consists of automatically constructed 100M clip-narration

pairs. We expect the MIL-NCE to yield better event
representations than the TSN because this model is pre-
trained on instructional vision-and-language resources.

Data preprocessing. As in [10], we truncated sequences
longer than 100 for the clip and 20 for the sentence and set
the maximum length of the clip sequence to 12. Finally, we
built the vocabulary based on words that occurred at least three
times. The resulting vocabulary contained 991 words.

Hyper-parameter settings. For both the encoder and de-
coder transformers, we set the hidden size to 768, number of
layers to two, and number of attention heads to 12. We train the
model using the optimization method described in [40], [10];
we use the Adam optimizer [41] with an initial learning rate
of 0.0001, β1 = 0.9, and β2 = 0.999. The L2 weight decay is
set to 0.01, and the learning rate warmup is over the first five
epochs. We set the batch size to 16, and continue training at
most 50 epochs using early stopping with SODA:CIDEr-D.

Models. We test the proposed method by comparing it
with four state-of-the-art dense video captioning models, as
described below:

• Masked Transformer (MT) [42] is a transformer-based
encoder-decoder DVC model that can be trained in an
end-to-end manner by using a differentiable mask.

• Event-centric Hierarchical Representation for DVC
(ECHR) [33] is an event-oriented encoder-decoder archi-
tecture for DVC. The ECHR incorporates temporal and
semantic relations into the output events for generating
captions accurately.

• SGR [15] is a top-down DVC model consisting of four
processes. The model (1) generates an overall paragraph
from the input video, (2) grounds the sentences with
events in the video, (3) refines captions based on the
grounded events, and (4) refines events, referring to the
refined captions.

• PDVC [14] is the state-of-the-art DVC model. It detects
N events densely, re-ranks the top K of them, and
generates sentences for the re-ranked top K events. Note
that K is the prediction target. This model is used in our
preliminary experiments described in Section III.

Ablations. We examine the impact of the components of
the proposed method through ablation studies on the following
variations:

• Base model (B) is the model introduced in Section IV.
• B + Ingredient (BI) incorporates the ingredient encoder

into the base model.
• BI + Visual simulator (BIV) incorporates the visual

simulator into the BI model.
• BIV + Textual attention (VIVT) additionally incorpo-

rates the textual attention module into the BIV model.

A. Word-overlap evaluation

Table II demonstrates the results of the word-overlap eval-
uation on both dvc eval and SODA with BLEU, METEOR,
and CIDEr-D. We observe that the base model consistently
outperforms state-of-the-art captioning models by a significant
margin in both evaluations. In the ablation, the BIV model
outperforms the BI model, and the BIVT model further

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

TABLE II
WORD-OVERLAP METRICS FOR THE BASELINE AND PROPOSED METHOD. THE BOLD SCORES ARE THE BEST AMONG THE COMPARATIVE METHODS.

Input modality Video feature dvc eval SODA
BLEU4 METEOR CIDEr-D METEOR CIDEr-D tIoU

MT Video (V) TSN 0.30 3.18 6.10 - - -
ECHR V TSN - 3.82 - - - -
SGR V TSN - - - 4.35 - -

PDVC (reported) V TSN 0.80 4.72 22.71 4.42 - -
PDVC (reproduced) V TSN 0.56 5.80 21.47 3.99 15.10 27.80

Base (B) V MIL-NCE 1.04 6.03 24.98 5.45 25.09 33.23
Base + Ingredients (BI) Video + Ingredients (VI) MIL-NCE 1.39 7.18 31.07 6.44 31.69 35.10

BI + Visual simulator (BIV) VI MIL-NCE 1.40 7.27 32.67 6.46 32.95 34.13
BIV + Textual attention (BIVT) VI MIL-NCE 1.92 8.04 37.24 7.29 38.93 35.06

Oracle V TSN 0.97 7.68 36.30 9.64 35.09 71.16

TABLE III
PERCENTAGE OF RECIPES THAT SATISFY |p− q| ≤ η, WHERE p, q, η
REPRESENTS THE NUMBER OF PREDICTED EVENTS, GROUND-TRUTH

EVENTS, AND A THRESHOLD, RESPECTIVELY. IN THIS EXPERIMENT, WE
CHANGE η FROM 0 TO 3.

η 0 1 2 3
PDVC 14.4 40.0 63.0 76.4
Model

B 18.6 52.1 71.7 83.4
BI 18.8 51.6 73.5 87.3

BIV 20.5 51.8 74.2 86.2
BIVT 19.7 51.8 73.5 87.5

Fr
eq

ue
nc

y

0

45

90

135

180

#Predicted events

3 4 5 6 7 8 9 10 11 >11

PDVC
B
BI

BIV
BIVT
GT

Fig. 8. Histogram of the number of predicted events and ground truth.

improves the BIV model. This indicates that both the dot-
product visual simulator and the textual attention module are
effective for accurate recipe generation.

B. Discussion on the number of predicted events
In addition to the word-overlap metrics, we discuss the

generated recipes from the perspective of the number of
predicted events. Table III shows the percentage of recipes
that satisfy |p−q| ≤ η, where p, q, η represents the number of
predicted events, ground truth, and a threshold, respectively.
In this experiment, we change η from 0 to 3. This result
demonstrates that the proposed models consistently predict a
more precise number of events than the PDVC. Fig. 8 shows
the histogram of the number of the predicted events. While the
PDVC outputs the specific number of events (i.e., 5, 7, 10),
the histogram of the proposed method draws a similar curve
to that of the ground-truth.

C. Qualitative analysis
Fig. 9 shows the predicted events and generated recipes from

the PDVC, B, and BIVT models, in comparison to that of the

Ground Truth

PDVC

BIVT

Base (B)

… Time

Ground Truth PDVC Base (B) BIVT

(a) (b) (c) (d) (e) (f) (g)

(a) (b) (c) (d)(e) (f) (g)

(a) (b) (c) (d) (e)(f)

(a) (b) (c) (d) (e) (f)

(a) Cut the pork into slices
(b) Cover the pork in
plastic wrap and pound
(c) Sprinkle salt and
pepper on top of the meat
(d) Melt butter in the pan
(e) Mix eggs milk salt and
pepper together
(f) Dip the pork in the egg
mixture and the bread
crumbs
(g) Fry the pork in the pan

(a) Add oil and salt to a
bowl
(b) Mix the chicken in the
flour and mix
(c) Fry the chicken in a
pan
(d) Fry the chicken in a
pan
(e) Heat the oil in a pan
(f) Fry the chicken in a
pan
(g) Fry the chicken in the
pan

(a) Cut the fat off of the
fat
(b) Season the meat with
salt and pepper
(c) Pour buttermilk into a
bowl and add salt and
pepper
(d) Coat the veal in flour
(e) Coat the meat in the
flour mixture
(f) Place the veal in the
pan

(a) Cut the pork in half
and remove the pork
(b) Season the pork
with salt and pepper
(c) Season the pork
with salt and pepper
(d) Heat some butter in
a pan
(e) Coat the pork in the
break crumbs
(f) Fry the pork in a
pan

… … … …

Fig. 9. Examples of the generated recipes. We compare three models: PDVC,
B, and BIVT with the ground truth.

ground-truth. In terms of the predicted events, PDVC outputs
highly overlapped events. The proposed method, on the other
hand, predicts events in the correct order, with minimal
overlap. This story-oriented sequential event prediction is an
advantage of the proposed method. In terms of the generated
recipes, the PDVC repeatedly generates the same contents,
ignoring the events (see (c) to (g)). The proposed methods
suppress this problem. A comparison of B and BIVT reveals
that the BIVT can generate sentences that are grounded with
events (e.g., “pork” is accurately verbalized in (a) in BIVT,
whereas “fat” is generated in (a) in B).

D. Discussion on the detailed model settings

Here, we discuss the detailed model settings from four
perspectives: (1) loss ablation studies, (2) memory update
strategies, (3) event encoders, and (4) parameter sensitivity
and the event candidates N . The results demonstrate that these
parameters are important to succeed in our task.

1) Loss ablation studies: Table IV shows ablation studies
on the loss function for the BIVT model. The experiment
yields two insights. First, all the losses are essential for training
the model. This is confirmed by removing all of them from
the full model (compare (a) and (g)). Second, ingredient-based
losses are more necessary than action-based ones. Removing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

TABLE IV
LOSS ABLATION STUDIES. IS, AS, IA, AND AA REPRESENT INGREDIENT
SELECTION, ACTION SELECTION, INGREDIENT ATTENTION, AND ACTION

ATTENTION LOSSES, RESPECTIVELY.

IS AS IA AA dvc eval SODA
BLEU4 METEOR CIDEr-D METEOR CIDEr-D tIoU

(a) 1.11 6.37 26.54 5.69 26.54 33.15
(b) X 1.28 7.31 31.59 6.46 33.10 33.78
(c) X 1.44 7.32 32.19 6.35 30.86 33.35
(d) X X 1.57 7.45 33.56 6.76 35.45 34.56
(e) X X X 1.76 7.79 36.84 7.12 36.96 34.91
(f) X X X 1.57 7.70 34.58 6.93 37.42 34.53
(g) X X X X 1.92 8.04 37.24 7.29 38.93 35.06

TABLE V
COMPARISON OF MEMORY UPDATE STRATEGIES: SEPARATE VS JOINT.

dvc eval SODA
BLEU4 METEOR CIDEr-D METEOR CIDEr-D tIoU

B
Separate 0.92 5.67 24.19 5.19 23.12 33.96

Joint 1.04 6.03 24.98 5.45 25.08 33.26
BIV

Separate 1.39 7.24 33.02 6.54 33.00 33.81
Joint 1.40 7.27 32.67 6.46 32.95 34.13
BIVT

Separate 1.78 7.85 36.65 6.92 36.84 33.85
Joint 1.92 8.04 37.24 7.29 38.93 35.06

the ingredient selection loss has a more significant influence
on the performance, compared to the action selection loss
(compare (b) with (d) and (c) with (d)). This tendency is the
same as the relationship between the ingredient attention and
action attention losses.

2) Memory update strategies: separate or joint?: Table V
shows a comparison of the memory update strategies. While
the separate memory update does not mix the memories
in the event and sentence transformers, the joint approach
proposed in Section IV fuses these memories. The result
demonstrates that the joint approach outperforms the separate
approach, indicating the effectiveness of the joint memory
update strategy.

3) Event encoders: Table VI shows the performance dif-
ference when changing the event encoders, indicating that the
MIL-NCE proved significantly superior to the TSN in all of
the settings. This occurs because the MIL-NCE is pre-trained
on the vision-and-language resource, Howto100M, which
captures the fine-grained event-level semantics of cooking
procedures. We conclude that pre-training on an appropriate
resource is essential to effective performance on our task.

4) Parameter sensitivity and the event candidates N :
The PDVC allows users to select the number of candidates
N when training the model. In the original study on the
PDVC, N is set to be 100 on the YouCook2 dataset. In this
experiment, we change the parameter N to be 25, 50, 100 and
200 to investigate the parameter sensitivity of the model. Table
VII shows the performance change of the proposed method
in different model settings: B, BIV, and BIVT. The results
demonstrate that the proposed method consistently performs
well on N = 25. We observe that increasing N degrades the
model performance. Although a higher N makes the maximum
tIoU larger (shown in Section III), the ratio of events that
are not oracle but highly overlapped with the ground-truth
increases. This prevents the model from selecting oracle events
precisely and causes it to overfit the training set.

TABLE VI
COMPARISON OF THE MODEL’S PERFORMANCE WHEN VARYING THE
EVENT ENCODERS: TSN AND MIL-NCE. NOTE THAT UNLIKE TSN,

WHICH IS PRE-TRAINED ON ONLY VISION RESOURCES, THE MIL-NCE IS
PRE-TRAINED ON INSTRUCTIONAL VISION-AND-LANGUAGE RESOURCE,

HOWTO100M.

dvc eval SODA
BLEU4 METEOR CIDEr-D METEOR CIDEr-D tIoU

B
TSN 0.36 4.24 15.55 3.79 14.98 31.71

MIL-NCE 1.04 6.03 24.98 5.45 25.08 33.26
BIV
TSN 0.52 4.93 18.98 4.51 18.32 31.77

MIL-NCE 1.40 7.27 32.67 6.46 32.95 34.13
BIVT
TSN 0.99 5.87 23.60 5.26 22.84 32.36

MIL-NCE 1.92 8.04 37.24 7.29 38.93 35.06

TABLE VII
COMPARISON OF THE MODEL’S PERFORMANCE WHEN VARYING THE

NUMBER OF THE EVENT CANDIDATES N .

dvc eval SODA
BLEU4 METEOR CIDEr-D METEOR CIDEr-D tIoU

B
N=25 1.27 6.49 27.84 6.19 29.34 35.26
N=50 0.98 6.42 27.12 5.89 26.34 33.79

N=100 1.04 6.03 24.98 5.45 25.08 33.26
N=200 0.93 6.16 25.93 5.52 26.13 33.93

BIV
N=25 1.71 7.50 34.18 7.02 36.39 36.13
N=50 1.51 7.52 33.37 6.86 34.24 35.60

N=100 1.40 7.27 32.67 6.46 32.95 34.13
N=200 1.23 6.81 29.51 5.95 28.86 33.15
BIVT
N=25 1.87 7.95 36.12 7.51 39.06 36.74
N=50 1.81 7.99 36.48 7.36 38.49 36.38

N=100 1.92 8.04 37.24 7.29 38.93 35.06
N=200 1.78 7.66 35.21 6.77 35.64 33.48

VII. CONCLUSION

In this paper, we tackled recipe generation from unseg-
mented cooking videos, a task that requires agents to (1)
extract key events that are essential to dish completion and
(2) generate sentences for the extracted events. We analyzed
the output of the DVC model and observed that, although (1)
several events are adoptable as a recipe story of a recipe, (2)
the generated sentences for such events are not grounded in
the visual content. Therefore, we hypothesized that we can
obtain correct recipes by selecting oracle events from the
output events of the DVC model and re-generating sentences
for them. To achieve this, we proposed a transformer-based
joint learning approach for the event selector and sentence
generator. The event selector selects oracle events from the
event candidate in the correct order, and the sentence generator
generates a recipe grounded in the events. We also extend the
model by including ingredient inputs. The additional modules
encourage the model to generate more grounded recipes ef-
fectively. In experiments, we confirmed that the base model
outperforms the state-of-the-art DVC models and the extended
model boosts the model’s performance. In addition, we showed
that the proposed models can select the correct number of
events, as with the ground-truth events. The qualitative evalu-
ation revealed that the proposed approaches can select events
in the correct order and generate recipes grounded in the
video content. Finally, we discussed the detailed experimental
settings for optimal recipe generation.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

REFERENCES

[1] A. Salvador, N. Hynes, Y. Aytar, J. Marin, F. Ofli, I. Weber, and
A. Torralba, “Learning cross-modal embeddings for cooking recipes and
food images,” in Proc. CVPR, 2017, pp. 3020–3028.

[2] A. Salvador, M. Drozdzal, X. Giro-i-Nieto, and A. Romero, “Inverse
Cooking: recipe generation from food images,” in Proc. CVPR, 2019,
pp. 10 453–10 462.

[3] L. Pan, J. Chen, J. Wu, S. Liu, C.-W. Ngo, M.-Y. Kan, Y.-G. Jiang,
and T.-S. Chua, “Multi-modal cooking workflow construction for food
recipes,” in Proc. ACMMM, 2020, pp. 1132–1141.

[4] D. P. Papadopoulos, E. Mora, N. Chepurko, K. W. Huang, F. Ofli, and
A. Torralba, “Learning program representations for food images and
cooking recipes,” in Proc. CVPR, 2022, pp. 16 559–16 569.

[5] H. Wang, G. Lin, S. C. H. Hoi, and C. Miao, “Structure-aware generation
network for recipe generation from images,” in Proc. ECCV, 2020, pp.
359–374.

[6] M. Zhang, G. Tian, Y. Zhang, and P. Duan, “Reinforcement learning
for logic recipe generation: Bridging gaps from images to plans,” IEEE
Transactions on Multimedia, 2021.

[7] B. Shi, L. Ji, Y. Liang, N. Duan, P. Chen, Z. Niu, and M. Zhou, “Dense
procedure captioning in narrated instructional videos,” in Proc. ACL,
2019, pp. 6382–6391.

[8] L. Zhou, C. Xu, and J. J. Corso, “Towards automatic learning of
procedures from web instructional videos,” in Proc. AAAI, 2018, pp.
7590–7598.

[9] V. Escorcia, F. C. Heilbron, J. C. Niebles, and B. Ghanem, “DAPs: deep
action proposals for action understanding,” in Proc. ECCV, 2016, pp.
768–784.

[10] J. Lei, L. Wang, Y. Shen, D. Yu, T. Berg, and M. Bansal, “Mart:
memory-augmented recurrent transformer for coherent video paragraph
captioning,” in Proc. ACL, 2020, pp. 2603–2614.

[11] B. Shi, L. Ji, Z. Niu, N. Duan, M. Zhou, and X. Chen, “Learning
semantic concepts and temporal alignment for narrated video procedural
captioning,” in Proc. ACMMM, 2020, pp. 4355–4363.

[12] T. Nishimura, A. Hashimoto, Y. Ushiku, H. Kameko, and S. Mori,
“State-aware video procedural captioning,” in Proc. ACMMM, 2021, pp.
1766–1774.

[13] R. Krishna, K. Hata, F. Ren, L. Fei-Fei, and J. C. Niebles, “Dense-
captioning events in videos,” in Proc. ICCV, 2017, pp. 706–715.

[14] T. Wang, R. Zhang, Z. Lu, F. Zheng, R. Cheng, and P. Luo, “End-to-end
dense video captioning with parallel decoding,” in Proc. ICCV, 2021,
pp. 6847–6857.

[15] C. Deng, S. Chen, D. Chen, Y. He, and Q. Wu, “Sketch, ground, and
refine: Top-down dense video captioning,” in Proc. CVPR, 2021, pp.
234–243.

[16] S. Fujita, T. Hirao, H. Kamigaito, M. Okumura, and M. Nagata, “Soda:
Story oriented dense video captioning evaluation framework,” in Proc.
ECCV, 2020, pp. 517–531.

[17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc.
NeurIPS, 2017, pp. 5998–6008.

[18] J. Wu, L. Pan, J. Chen, and Y.-G. Jiang, “Ingredient-enriched recipe
generation from cooking videos,” in Proc. ICMR, 2022, pp. 249–257.

[19] C. Kiddon, L. Zettlemoyer, and Y. Choi, “Globally coherent text
generation with neural checklist models,” in Proc. EMNLP, 2016, pp.
329–339.

[20] A. Bosselut, A. Celikyilmaz, X. He, J. Gao, P.-S. Huang, and Y. Choi,
“Discourse-aware neural rewards for coherent text generation,” in Proc.
NAACL-HLT, 2018, pp. 173–184.

[21] J. Harashima, Y. Someya, and Y. Kikuta, “Cookpad image dataset: An
image collection as infrastructure for food research,” in Proc. ACM
SIGIR, 2017, pp. 1229–1232.

[22] K. Chandu, E. Nyberg, and A. W. Black, “Storyboarding of recipes:
Grounded contextual generation,” in Proc. ACL, 2019, pp. 6040–6046.

[23] T. Nishimura, A. Hashimoto, and S. Mori, “Procedural text generation
from a photo sequence,” in Proc. INLG, 2019, pp. 409–414.

[24] T. Nishimura, A. Hashimoto, Y. Ushiku, H. Kameko, Y. Yamakata, and
S. Mori, “Structure-aware procedural text generation from an image
sequence,” IEEE Access, vol. 9, pp. 2125–2141, 2020.

[25] L. Zhou, Y. Kalantidis, X. Chen, J. J. Corso, and M. Rohrbach,
“Grounded video description,” in Proc. CVPR, 2019, pp. 6578–6587.

[26] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “BLEU: a method for
automatic evaluation of machine translation,” in Proc. ACL, 2002, pp.
311–318.

[27] S. Banerjee and A. Lavie, “METEOR: an automatic metric for MT
evaluation with improved correlation with human judgments,” in Proc.
ACL Workshop IEEMMTS, 2005, pp. 65–72.

[28] R. Vedantam, C. L. Zitnick, and D. Parikh, “CIDEr: consensus-based
image description evaluation,” in Proc. CVPR, 2015, pp. 4566–4575.

[29] E. Jang, S. Gu, and B. Poole, “Categorical reparametrization with
gumble-softmax,” in Proc. ICLR, 2017.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. CVPR, 2016, pp. 770–778.

[31] A. Miech, J.-B. Alayrac, L. Smaira, I. Laptev, J. Sivic, and A. Zis-
serman, “End-to-end learning of visual representations from uncurated
instructional videos,” in Proc. CVPR, 2020, pp. 9879–9889.

[32] A. Miech, D. Zhukov, J.-B. Alayrac, M. Tapaswi, I. Laptev, and J. Sivic,
“HowTo100M: learning a text-video embedding by watching hundred
million narrated video clips,” in Proc. ICCV, 2019, pp. 2630–2640.

[33] T. Wang, H. Zheng, M. Yu, Q. Tian, and H. Hu, “Event-centric
hierarchical representation for dense video captioning,” IEEE Trans. on
Circuits and Systems for Video Technology, pp. 1890–1900, 2021.

[34] J. Pennington, R. Socher, and C. Manning, “Glove: global vectors for
word representation,” in Proc. EMNLP, 2014, pp. 1532–1543.

[35] M. Mintz, S. Bills, R. Snow, and D. Jurafsky, “Distant supervision for
relation extraction without labeled data,” in Proc. ACL-IJCNLP, 2009,
pp. 1003–1011.

[36] A. Bosselut, O. Levy, A. Holtzman, C. Ennis, D. Fox, and Y. Choi,
“Simulating action dynamics with neural process networks,” in Proc.
ICLR, 2018.

[37] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. V. Gool,
“Temporal segment networks for action recognition in videos,” IEEE
Trans. on Pattern Analysis and Machine Intelligence, pp. 2740–2755,
2019.

[38] S. Ioffe and C. Szegedy, “Batch normalization: accelerating deep net-
work training by reducing internal covariate shift,” in Proc. ICML, 2015,
pp. 448–456.

[39] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. CVPR, 2009, pp.
248–255.

[40] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: pre-training
of deep bidirectional transformers for language understanding,” in Proc.
NAACL, 2019, pp. 4171–4186.

[41] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. ICLR, 2015.

[42] L. Zhou, Y. Zhou, J. J. Corso, R. Socher, and C. Xiong, “End-to-end
dense video captioning with masked transformer,” in Proc. CVPR, 2018,
pp. 8739–8748.

	I Introduction
	II Related Work
	II-A Recipe generation from visual observations
	II-B Video captioning

	III Oracle-based Analysis of the Existing DVC Model
	III-A Quantitative evaluation
	III-B Qualitative evaluation

	IV Proposed method
	IV-A Event selector
	IV-B Sentence generator
	IV-C Memory update
	IV-D Loss functions

	V Extended model
	V-A Dot-product visual simulator
	V-B Textual attention
	V-C Loss functions

	VI Experiments
	VI-A Word-overlap evaluation
	VI-B Discussion on the number of predicted events
	VI-C Qualitative analysis
	VI-D Discussion on the detailed model settings
	VI-D1 Loss ablation studies
	VI-D2 Memory update strategies: separate or joint?
	VI-D3 Event encoders
	VI-D4 Parameter sensitivity and the event candidates N

	VII Conclusion
	References

