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Abstract. We introduce a new simple method in hypernym discovery task based
on the distributional inclusion hypothesis. Our method utilizes LSTM language
models to discover possible alternative words in the context of the given hyponym
word and find the hypernym words within it. We implemented our method and
tested it on a well-known hypernym discovery task, SemEval 2018 task 9. The
experimental results showed that it achieved the state-of-the-art in comparison
with existing unsupervised methods.
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1 Introduction

Hypernym-hyponym relationship, also known as is-a relationship, is essential to model
world knowledge for artificial intelligence. Several benchmark tasks [2, 3, 21, 25, 26]
have been proposed to evaluate hypernymy detection methods. A hypernym detection
task is a binary classification distinguishing word pairs v and w of is-a relations, or v ≺
w in short, from other word pairs. This task setting is, however, sometimes criticized
that it tends to give high scores to models memorizing the words which frequently
appear as hypernyms [22]. Additionally, the best models tend to be inconsistent among
datasets, for example, figures reported by Chang et al. [7], for they depend on negative
examples contained in the datasets. For example, some dataset contains random word
pairs, and other datasets contain word pairs of has-a relationships as a negative example.

Recently, a new framework for evaluating hypernymy detection models is proposed,
namely hypernym discovery [9]. Hypernym discovery is the task of finding the appro-
priate hypernyms for a given input word or phrase from the whole vocabulary of the
corpus. This formulation enables us to test a system in settings more alike to real-world
applications. Thus we focused on a domain-specific task of well-known SemEval 2018
shared task [6] in our experiments.

In the background explained in section 2, we came up with an idea that simple and
straightforward approach based on alternativity of a word in its contexts may perform
better than existing methods attempting to represent the sense of a word by a single
vector. We utilize LSTM [12] language models (LMs) to calculate the word alternativity
of w to v as the measure of being v ≺ w, and find the hypernyms of v within words
which have high alternativity to v.
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We implemented our idea and tested it in SemEval 2018 shared task. In the subse-
quent sections, we first describe background and our method in detail and then evaluate
it with its experimental results.

2 Background

The distributional inclusion hypothesis (DIH) [10] is a theoretical foundation of unsu-
pervised learning of hypernymy relations, extending the distributional hypothesis [11].
Several measures [8, 14, 15, 27] for the word co-occurrence frequency or PPMI ma-
trix [5] have been proposed in accord with this hypothesis.

The distributional informativeness hypothesis [20] is another theoretical foundation
of unsupervised learning inspired by DIH. They hypothesize that a context of a word
is more informative than the context of its hypernym, in the sense of the information
theory.

Prediction-based approach for word semantics has been made in recent research:
Baroni et al. [1] showed that vectors trained with Skip-Gram prediction task perform
better in estimating word relatedness and resolving word analogies than count-based
methods. For hypernymy, Chang et al. [7] proposed distributional inclusion vector em-
bedding (DIVE), a model specially designed to capture the hypernymy-hyponym rela-
tions through Skip-Gram predictions, providing a firm baseline for hypernym discovery
task.

3 Hypernymy Measure based on a Language Model

3.1 Definition of the Hypernymy Relationship

Adopting one of the definitions of is-a relationship proposed by Brachman [4], we de-
fine the hypernymy as the following.

Definition 1. Let vi be one of the senses of the term v and Set(vi) denotes the set of
the entities, the concepts, or the collections of things (for collective terms like “group”)
covered by the sense vi. If and only if Set(vi) ⊂ Set(wi), then “w is a hypernym of v”
(v ≺ w).

Hereafter, we assume a word has only one sense and equate the word sense wi with its
term w for simplicity.

3.2 Hypernyms are More Likely to Appear in the Context where their
Hyponyms Appear

DIH is a statement that if v ≺ w, then all syntactical properties of w also hold for v and
vice versa. This hypothesis is based on the assumption that a hypernym can substitute
for its hyponyms by definition.

But why a hypernym can substitute for its hyponym? Let us consider the case that
an author wants to write a sentence about some real-world entities E and needs to
determine the wording for E. Then, it is reasonable to assume that (s)he chooses the
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term v so that the sense of v covers E, and v has an appropriate level of abstraction and
matches the writing style. By the definition 1, it automatically holds that w covers E
when v covers E if v ≺ w. Therefore, (s)he can choose w instead of v in context where
v is appropriate, provided that w has an appropriate generality and matches the style.

Now let us consider the probability of occurrence of a certain word v in a given
context c based on this argument. First we assume that the author mentions entities E
in a context c with probability P (c, E), which derives the conditional probability (in
theory):

P (E | c) = P (c, E)∫
E∈ΩE

dP (c, E)
,

where
∫
E∈ΩE

dP (c, E) denotes the marginal probability integrated by E. The condi-
tional probability P (v | c) can be modeled by the wording process as follows:

P (v | c) = PA(v | c) · PS(v | c) · PE∼P (E|c)(E ⊂ Set(v)),

where PE∼P (E|c)(E ⊂ Set(v)) denotes the probability that E ⊂ Set(v) holds for the
set of entitiesE drawn from the distribution P (E | c), PA(v | c) denotes the probability
of the word in the context c being at the same level of abstraction as v, and PS(v | c)
denotes the probability of the word in the context c matches the writing style to the
same extent as v.

By the definition 1, if v ≺ w then Set(v) ⊂ Set(w), and therefore, PE∼P (E|c)(E ⊂
Set(v)) ≤ PE∼P (E|c)(E ⊂ Set(w)). Ignoring the writing style, if PA(w | c) is con-
stant or at least

PA(v | c)
PA(w | c)

≤
PE∼P (E|c)(E ⊂ Set(w))

PE∼P (E|c)(E ⊂ Set(v))
, (1)

then it is concluded that P (v | c) ≤ P (w | c) for any context c. This result implies
that a hypernym is more frequent than its hyponym. It also implies that P (v, vc) ≤
P (w, vc) if v ≺ w where P (v, vc) denotes the joint probability that the words v and
vc co-occur in the same bag-of-words, the same document, or the same latent topic,
or there are instances of a certain type of syntactic dependency between v and vc. As
a corollary, it rationalize the estimation of hypernymy by calculating Clarke’s degree
of entailment (CDE) [8] or L1 norm of the vectors from the frequency matrix of word
co-occurrences [7] .

3.3 Filling Blanks by Language Models to Discover Hypernyms

We propose to use fitness to the concrete context which considers the whole sentence
instead of bag-of-words or syntactic dependency relations.

Definition 2. concrete context of v is the text blanked at the target word v.

For example, “Antiviral drugs are ____ in treating influenza.” is a concrete context of
v = “effective”. For all w in the vocabulary V , we proposed to calculate the averaged
fitness to the concrete contexts of v, which we call the word alternativity of w to v.
The alternativity cannot be measured by counting word occurrences since the concrete
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context is almost unique. Instead, we propose to use an LM to calculate the probability
of alternative words filling in the blank.

We propose to define a measure for word alternativity of w to v, namely LM-
Measure, as the following:

Definition 3. X-LM-Measure (v ≺ w) is the difference of log-likelihood or relative
information content averaged over all concrete contexts C[v] of v:

LM-Measure (v ≺ w) = E
c∈C[v]

[logPLM(w | c)− logPLM(v | c)] ,

where PLM is a word occurring probability according to the X language model.

3.4 Contextual Language Models

The conventional LMs predict the word only from the preceding words. This model
often mistakes the part-of-speech (POS), for example in section 3.1, the LSTM LM
predicted “not,” “generally,” or “the” to fill in the blank in the above example. Thus
we adopted to use the contextual language model (cLM) where both the preceding and
the succeeding words are provided. A cLM trained by the method described in the next
section predicted “effective,” “useful,” or “recommended” belonging to the proper POSs
to fill in the blank in the same example.

3.5 Learning Contextual Bidirectional LSTM

Contextual BLSTM [18] or cBLSTM is a cLM which consists of two LSTMs which
consumes word sequences forward and backward ( Fig. 1 ).

We calculated the logit vector h = hf,k−1 + hb,k+1 using hf,k−1 and hb,k+1

obtained from the (k − 1)-th and the (k + 1)-th output of the forward and backward
LSTMs, respectively. We tied the parameters of the linear layer with the embedding
layer following [13]. We trained it by minimizing the categorical cross entropy loss of
the predicted probability distribution.

3.6 Fast Calculation of LM-Measure

For LMs or cLMs outputting word probability using softmax function to normalize the
logit vector h, the relative information content logPLM(w|c) − logPLM(v|c) can be
calculated by

log[softmax(h)]v − log[softmax(h)]w = log
exp(hv)∑
i∈V exp(hi)

− log
exp(hw)∑
i∈V exp(hi)

= hv − hw,

where the subscript hv denotes the scalar element of the vector h at the index corre-
sponding to the word v. In our experiments, we obtained LM-Measure for all pairs of
words in one path using the following procedure. First, we calculated hv−hw for all w
in the most common |V ′| words for all v in the corpus in order of appearance. The sum
of the relative information content was stored in a matrix WMeasure ∈ R|V |×|V ′|. Then,
we divided every row by the corpus frequency of the corresponding word. We ran this
path as fast as running one epoch of the training of the cBLSTM.
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Fig. 1. cBLSTM combines forward and backward LSTMs to predict a word in a given con-
text. The square boxes in the middle stand for LSTM cell and circles stand for hidden vectors.
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Table 1. Hyperparameters used to train the baseline models

word2vec
Window Size 8
# of negative samples 25
cbow 1
Downsampling threashold 10−4

Training epochs 15
DIVE

# of negative samples 30
Inclusion Shift Yes
Window size 5
PMI filter size 5
Embedding size 100
Training epochs 15

4 Evaluation

4.1 Training Corpus

We retrieved the pre-tokenized corpus from the competition website of SemEval 2018
1. The task consists of five subtasks: three for general domains for different languages
(1A, 1B, and 1C) and two for specific domains (2A–medical and 2B–music). We con-
ducted experiments only on 2A and 2B, since it appears to be more practical settings
for unsupervised learning while dataset is relatively small. The corpus originates from
several in-domain sources. We split the text into the first 1,000 lines for validation and
rest for training corpus. We limited the vocabulary to the most common 80,000 words
in the corpus, and all out-of-vocabulary words were rendered to <unk>.

Randomly taken 1%, 10%, and 100% sentences from the training corpus are used
to train the baseline and proposed models to compare the degree of dependence on the
size of the corpus.

4.2 Model Setups

Baselines In the results section, table 2 cites the results of unsupervised methods sum-
marized by Camacho-Collados et al. [6]. ADAPT [16] calculates cosine similarity of
word embedding vectors learned by skip-gram negative sampling with the given cor-
pus. APSyn [19] is a symmetric measure to calculate the similarity of two words using
the rank of shared context in the PPMI matrix. SLQS [20] is an asymmetric measure
to calculate the differences in generality between two words by exploiting the distribu-
tional informativeness hypothesis.

In addition to these methods, we set two unsupervised baselines, namely W∆S and
ClogP.
W∆S: We adopted the W∆S hypernymy measure from [7] as a baseline. W∆S is the
cosine similarity of the word2vec [17] vectors multiplied by the generality signal
∆S(v ≺ w) = ‖w‖1 − ‖v‖1 of DIVE.

1 https://competitions.codalab.org/competitions/17119

https://competitions.codalab.org/competitions/17119
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We trained the word2vec model by the Mikolov’s code2 and the DIVE model by
the code provided by the authors3. We searched for the best number of dimensions d of
word2vec vectors, but other hyper-parameters are fixed ( Table 1 ).
ClogP: Since LM-Measure gives high score to frequent words, we set the following
baseline to see if LM-Measure do more than selecting similar and common words:

ClogP [α] (v ≺ w) = cos (v,w) + α · logP (w),

where v and w are word2vec representations of v and w, respectively, and α is a
hyper-parameter and P (w) is the frequency of w in the corpus divided by the total
number of words.

Training Language Models for LM-Measure We trained LSTM and cBLSTM using
step annealing for 20 epochs. Firstly we split the corpus into n parts and the first m
words of each part are feed into the LSTM or cBLSTM in a batch. The hidden states of
the LSTM or cBLSTM are passed to the next batch, which processes the next m words
4. We calculated the hypernymy measure as described in section 3 using |V ′| = 20000.

LM-Measure Variations We added the following variations to the proposed LM-
Measure model.
Label smoothing: To ensure that cBLSTM predicts a large variety of words, we adopted
the label smoothing technique [23, 24]. We imposed 0.9 and 0.1/(|V | − 1) for correct
and incorrect predictions instead of 1 and 0 as a supervision signal when calculating
cross entropy during training.
Discounting word frequency: In general, a cLM gives a high probability to frequent
words. In the presence of validation dataset, we can tune the system to cancel this
effect by adequately discounting the measure by the log-frequency of w. We calculated
LM-Measure (v ≺ w) − α · logP (w) as a hypernymy measure, where α is a hyper-
parameter.
POS filtering: In this variation, we filtered out the hypernym candidates in case that
their POS does not match the given hyponym word. We used the WordNet database
as a POS dictionary to find if any synset of the candidate hypernym be a noun, for all
hyponym words are nouns in the dataset used in the experiment.

4.3 Validation and Test Dataset of Hypernym-Hyponym Pairs

We obtained the validation and test dataset from competition website for SemEval 2018.
We used dataset originally provided for training supervised systems as the validation
dataset. Validation and test dataset contains 500 hyponyms Vdataset = {v1, v2, ..., v500}
and the corresponding lists of hypernyms Wv1 ,Wv2 , ...,Wv500 such that

2 https://github.com/tmikolov/word2vec
3 https://github.com/iesl/Distributional-Inclusion-Vector-Embedding
4 This feeding process disturbs the word order for backward LSTM of cBLSTM once in m

words, but it enables efficient learning since it can make n × m predictions at once. The
dimensions of the embedding vector and the hidden state is set to 300.

https://github.com/tmikolov/word2vec
https://github.com/iesl/Distributional-Inclusion-Vector-Embedding


8 Hayato Hashimoto and Shinsuke Mori

∀w ∈ Wvi(vi ≺ w), and each word vi is labeled with either “Concept” or “Entity.”
We excluded entities and left concepts because unsupervised learning is not suitable for
finding hypernyms of entities since there is only a little number of possible hypernyms,
being more like a classification problem.

4.4 Evaluation Details

As described by Camacho-Collados et al. [6], we estimated fifteen hypernym candidates
wv,1, wv,2, ..., wv,15 for each given word v ∈ Vdataset and calculated mean average
precision (MAP), mean reciprocal rank (MRR), and precision at k = 1, 5, and 15
(P@k) by comparing them with the corresponding hypernyms Wv in the dataset. We
used the implementation provided by Camacho-Collados et al. [6] to calculate these
metrics. We excluded 180 stop words and the given word itself from the candidates.
The stop word list is basically the same as the one used in the DIVE.

For input phrases more than one word, we calculated the score of the last word. We
also conducted an experiment calculating hypernym scores using the averaged vectors
or the averaged LM-Measure for all words appeared in a phrase, but the performance
was inferior.

We tuned α and the dimension d of word2vec vectors by choosing the ones max-
imizing MAP of the validation pairs. We searched over (100, 300, 1000) for d and (1/5,
1/10, ..., 1/30, 0) for α.

4.5 Results and Discussion

Table 2 shows the result of our experiments. Fistly, we observed that even the ClogP
baseline surpasses the result reported in literature [6]. In hypernym discovery tasks, it
seems that it is effective to narrow down the large vocabulary by selecting more general
and similar words, and the word frequency is a reliable index to measure the generality
of a word.

Secondly, we observed that LM-Measure worked without tuning discounting hyper-
parameter. We suspect that contributions to the hypernymy measure of the similarity and
the generality are already balanced by the information content approach.

Thirdly, we observed that LM-Measure surpasses ClogP baseline, especially at
P@5 and P@15. These figures imply that it picked up a wider variety of correct hyper-
nyms than ClogP baseline. To substantiate this point, we listed the correct hypernyms
which appear in the top 5 hypernym candidates list obtained by one method but do not
appear in the top 15 hypernym candidates obtained by the other method ( Table 3 ) and
examined the hypernym candidates of “influenza” ( Table 5 .). It seems that ClogP
preferred co-occurring related concepts and failed to predict “disease” since it did not
co-occur with disease names since the authors avoid redundancy, while LM-Measure
succeed to predict “disease.”

We tested ability of LM-Measure to retrieve hypernyms from frequent (and hence
presumably generic) words by calculating the average precision for each hypernyms
and showing its dependency to the word frequency. Fig. 2 shows the result of this in-
vestigation. The figure shows that LM-Measure estimates hypernym candidates better
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Table 2. Results of the subtasks 2A and 2B of the SemEval 2018 task 9 Bold figures indicate
the best score in the same corpus size. Note that Anu is the model trained with both the corpus
and the WordNet.

Subtask 2A - medical domain 2B - music domain
Performance metric MAP MRR P@1 P@5 P@15 MAP MRR P@1 P@5 P@15
Training data used: 1%
ClogP 10.03 29.99 29.20 8.87 7.03 4.03 11.67 9.78 3.47 2.66
cBLSTM-LM-Measure 14.54 39.30 36.80 13.91 10.26 6.85 19.87 15.92 6.45 5.10
+ discount 15.02 39.81 36.80 14.52 10.49 6.82 19.70 15.64 6.56 5.08
+ smoothing 14.13 38.58 36.00 13.53 9.91 6.68 19.12 15.36 6.49 4.86
+ smoothing + discount 14.30 38.58 35.60 13.85 9.98 6.68 19.16 15.36 6.49 4.84
Training data used: 10%
ClogP 14.66 40.31 38.60 13.27 10.47 6.99 20.26 16.76 6.54 5.03
cBLSTM-LM-Measure 16.77 43.81 39.20 16.52 12.03 8.40 22.28 16.48 8.04 6.55
+ discount 16.97 43.87 38.40 16.74 12.11 8.40 22.28 16.48 8.04 6.55
+ smoothing 16.54 42.84 38.40 16.06 11.87 8.36 23.11 17.60 8.16 6.25
+ both 16.62 43.23 38.60 16.18 11.84 8.36 23.11 17.60 8.16 6.25
Training data used: 100%
ClogP 13.96 39.14 36.60 12.89 10.31 7.19 20.31 16.20 7.37 5.45
W∆S 3.20 9.21 6.00 3.32 2.45 2.98 8.64 5.03 3.05 2.36
LSTM-LM-Measure 12.62 33.19 25.40 13.09 9.01 5.11 14.03 9.22 5.40 4.09
+ POS filtering 14.49 38.95 33.00 14.55 10.07 5.92 16.04 10.06 6.14 4.70
+ POS filtering + discount 14.44 38.86 32.80 14.59 9.95 5.92 16.04 10.06 6.14 4.70
cBLSTM-LM-Measure 16.81 42.64 37.40 16.78 12.22 8.84 24.17 18.44 8.81 6.58
+ discount 16.91 42.77 37.40 16.98 12.28 8.84 24.17 18.44 8.81 6.58
+ smoothing 16.75 42.82 37.60 16.68 12.14 8.17 21.83 16.76 7.80 6.61
+ smoothing + discount 16.75 42.82 37.60 16.68 12.14 8.17 21.83 16.76 7.80 6.61
+ POS filtering 16.93 43.04 37.60 16.91 12.36 8.90 24.24 18.44 8.81 6.64
+ POS filtering + discount 17.02 43.18 37.60 17.03 12.37 8.90 24.24 18.44 8.81 6.64
Results of unsupervised methods for Concepts summerized by Camacho-Collados et al. [6]
ADAPT [16] 8.13 20.56 - 8.32 - 1.88 5.34 - 1.89 -
Anu 7.05 17.51 - 7.29 - 10.68 27.13 - 10.84 -
(Team 13) 2.55 7.19 - 2.52 - 4.83 14.33 - 4.51 -
balAPInc [14] 0.91 2.10 - 1.08 - 1.44 3.65 - 1.58 -
APSyn [19] 0.65 1.43 - 0.72 - 1.13 2.55 - 1.30 -
SLQS [20] 0.29 0.66 - 0.33 - 0.64 1.25 - 0.65 -

Table 3. Hypernyms found unique to each
method LM-Measure can find generic words as
hypernyms compared to ClogP.

LM-Measure ClogP
hypernym count hypernym count
disease 83 enzyme 2
drug 8 anemia 2
pain 4 pigment 1
disorder 3 neoplasm 1
(other 15 words) 1 or 2 (other 20 words) 1

Table 4. Hypernyms found unique to each lan-
guage model Contextual language model can
find more specific words as hypernyms com-
pared to a non-contextual language model.

cBLSTM LSTM
hypernym count hypernym count
drug 2 disease 2
allergen 1 blood 1
constipation 1 fluid 1
corticosteroid 1 ion 1
(other 22 words) 1
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Table 5. Hypernym candidates for “influenza” The proposed LM-Measure successfully es-
timates the word “disease” and “infection” as hypernyms while ClogP wrongly estimates co-
occurring words (“outbreak”, “seasonal”) and synonyms (“flu”).

LM-Measure ClogP
Influenza respiratory virus RSV HIV viral can-
cer pandemic <eos> hepatitis disease H5N1
H1N1 adenovirus lung H3N2 infection infec-
tious human

Influenza H1N1 pandemic RSV ILI pH1N1
viruses outbreak SARI pdm09 ARI outbreaks
virus H3N2 H5N1 viral seasonal respiratory flu

if they have large corpus frequency, and for frequent hypernyms ClogP does not match
the LM-Measure results even if the large α is set to prioritize the frequent words. It
seems that if there is larger difference in generality between two words, word2vec
vectors no longer show high cosine similarity.

In this investigation, we used the following defition of average precision AP of the
hypernym w:

AP (w) =
1

|Vw|
∑
v∈Vw

r(v,w)∑
k=1

1Wv
(wv,k)

r(v, w)
,

where Vw ⊂ Vdataset is the set of hyponyms of w in the test dataset, wv,k is the k-th
hypernym candidate of v, r is the rank of w (i.e. wv,r(v,w) = w), and

1Wv
(w) =

{
1 (w ∈Wv, i.e. v ≺ w)
0 (otherwise)

.

One limitation of LM-Measure is that it sometimes considers the hyponym as a
hypernym. In Table 5 , LM-Measure wrongly estimates “H5N1” being a hypernym of
“influenza,” while it is, in fact, a hyponym of “influenza.” It may reflects the fact that
medical research papers preferably describe this disease at the subtype level to retain
academic detailedness, and the inequality assumption (1) does not hold in this case.

Lastly, POS filtering shows large improvement in LSTM-LM-Measure but small
improvement in cBLSTM-LM-Measure as expected. The results also shows that POS
filtering alone is not enough to fill the gap between LSTM-LM-Measure and cBLSTM-
LM-Measure. Table 4 shows the correct hypernyms appear in the top 5 candidates
obtained by LM-Measure + POS filtering using one language model but do not appear
in the top 15 hypernym candidates obtained by LM-Measure + POS filtering using the
other language model.

5 Conclusion and Future Work

By taking the straightforward approach utilizing the distributional inclusion hypothe-
sis, our proposed method achieved state-of-the-art in unsupervised hypernym discovery
tasks.
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Fig. 2. LM-Measure estimates hypernym candidates better if they have large corpus fre-
quency. Hypernym precision of the proposed cBLSTM-Measure and the ClogB baseline using
different hyperparameters α were compared by the subtask 2A of the SemEval 2018 task 9. The
hypernyms were divided into eight bins according to their log frequency (horizontal axis) and
mean precision (vertical axis) were calculated for each bin.
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Our method can be extended from words to phrases by replacing a blank with n
consecutive blanks when calculating LM-Measure. Another direction of extension is
to use attentional models as the cLM. The Transformer LM [24] can be trained as a
cLM by masking.
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