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ABSTRACT

This study aims to construct a KUSK Dataset’s extension that
provides records of chef’s touching and releasing action to ob-
jects, which we call “access to objects,” in his/her food prepa-
ration. The records of access to object are known as a key ev-
idence for understanding chef’s activity in food preparation.
In the dataset, we provide object images as well as the records
of access to object. The data are obtained by manual annota-
tion and by automatic processing. As a result of annotation,
we collected 4391 object images from 57 cooking observa-
tions. We also confirmed that the CNN-based state-of-the-art
method reached 74.15% accuracy on average in recognizing
objects on a cooking counter.

Index Terms— Cooking and Eating Activities, Dataset,
Object Recognition, Annotation

1. INTRODUCTION
It is the main goal in computer science to make computers
understand every event observed by sensors and generate ex-
planatory texts. Encouraged by a large-sized corpus obtained
from the Web and an accurate corpus custom-built by crowd
sourcing, image-text translation has been actively studied in
recent years [1, 2, 3]. There are also a few methods that trans-
late a short video clip into texts [4]; however, as long as the
authors know, no methods exist as yet to translate a video with
multiple events into text. In order to obtain an accurate trans-
lator for such long video, it is a necessary process to prepare
an amount of pairs of video and text that are aligned in each
event, namely the video should be segmented into clips and
each clip has corresponding textual descriptions for an event.
There has not been so much research as yet in the area of
video-text alignment [5].

For the study of video-text alignment and translation, food
preparation is a practical and applicative subject. Food prepa-
ration is a sequence of tasks in which materials are processed,
divided, and merged to finish a product. This is the general
framework in manufacturing activities. Similarly, recipes fol-
low a general form of procedural text in the sense that they
are useful to describe any type of food preparation. Thus, a
method that matches a recipe text and tasks in food prepara-
tion activity can be applied to other manufacturing processes
as well.

As a key evidence to understand events in food prepa-
ration, we focus on humans touching and releasing objects,

which we call “access to objects” [6]. Our previous work
[6] achieved an accuracy of approximately 70% when fore-
casting the next sequence of action from access to object with
the help of recipe information. In this study, we aim to con-
struct KUSK Object Dataset: a KUSK Dataset’s extension
that containing the records of access to objects, for encourag-
ing studies of the video-text alignment problem in food prepa-
ration.

2. RELATED DATASETS

The past success of image-text translation was led by PAS-
CAL sentence dataset [7], which provided both annotation
text for images and image processing results for the same
images. Because a collaboration of computer vision (CV)
and natural language processing (NLP) is necessary for this
task, the provided CV results were shared by several NLP re-
searchers [1, 2]; this boosted the studies of image-text trans-
lation in the early stage. Modeling after the success in Pascal-
sentence dataset, we also provide a dataset that is supposed to
be used by NLP researchers, as well as provide a baseline in
detecting access to object for CV researchers.

There are two main components that describe a food
preparation activity: the chef’s physical motions, and the
status of objects and equipment on the cooking counter.
TUM Kitchen Data Set [8] and CMU Multi-Modal Activity
Database [9] focused on motions that are recorded by cam-
eras placed on the ceiling [8], first person vision cameras [9],
and motion captures [8, 9].

Some datasets have recorded both motions and the sta-
tus of the cooking counter by RGB-D cameras [10, 11]. An
ideal way is to observe food preparation activities by plac-
ing cameras behind the cooking counter; however this set-
ting can only be done with an island kitchen. The Break-
fast Actions Dataset [12] is a dataset that attempts to observe
chef’s motions and cooking counter from a camera attached
on the side wall. Although this setting will face more self-
occlusions (in observing motions) and inter-occlusions (in ob-
serving cooking counter), it is available with I-shaped and L-
shaped kitchens.

There are datasets that place more value on observing
cooking counter rather than the chef’s motion. 50 Salads
dataset [13] observes food preparation activities by cameras
set on the ceiling. To further enrich information on the chef’s
motion, wearable 3D accelerometers are used together with
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Fig. 1. Usecases of our dataset.
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Fig. 2. Annotation Example.

cameras. Similarly, KUSK Dataset [14] 1 supplementarily
provides videos from a camera on the side wall and various
sensors, such as flow meters for the water supply and sew-
erage systems and power meter for the induction heaters in
addition to cameras on the ceiling. In addition to those sen-
sors, KUSK dataset uses load sensors to observe mechanistic
interactions between the chef and the cooking board, which is
unobservable by any cameras.

We prepare our dataset as an extension of KUSK Dataset,
namely, KUSK Object Dataset, because KUSK Dataset col-
laborates with Flow Graph Corpus [15]2. Flow Graph Corpus
is a publicly available dataset providing workflow structure
of recipe texts obtained by a NLP technique. The workflow
structure of any observations in KUSK Dataset’s 20 recipes is
available in Flow Graph Corpus. Providing the record of ac-
cess to object in videos in KUSK Dataset yields many options
that can be used in a variety of studies: as an input to match
recipe text and processes of food preparation, as an input to
analyze recipe texts with observations, and as a baseline of
object recognition in food preparation (Fig 1).

3. SEMI-AUTOMATIC ANNOTATION FOR ACCESS
TO OBJECTS

A task of video annotation is generally time consuming. In
our case, the chef’s access to objects was nearly 100 times
or more during the 30 minutes of food preparation [16].
Although the frequency of such accesses depends on each
recipe, it is too costly to annotate every access to objects man-
ually.

To reduce the burden of the annotation task, we hire an ob-
ject detection method proposed in [16]. This method is based
on background subtraction, which does not require any train-
ing data of objects. Because we do not have enough annotated
images for food preparation, it is necessary to work without
training data. Furthermore, this method detects objects with

1http://kusk.mm.media.kyoto-u.ac.jp/
2http://plata.ar.media.kyoto-u.ac.jp/data/

recipe/home.html

the label of “put” and “taken,” which are respectively corre-
sponding to “release” and “touch.”

Using the results from this method, we semi-automate the
annotation task. The task comprises three manual steps: cor-
recting errors in the output from object detection, listing up
vocabulary of object classes for each recipe, and assigning the
object class to each object, which is automatically detected
and manually confirmed at the first step. These three steps do
not require annotators to scan videos thoroughly.

We will now describe the three manual steps in more de-
tail. In the first step, the results by [16] might include simple
missed/false-detection, failures in labeling “put” and “taken,”
and errors such that two or more objects are detected as an
object or an object as several objects. To correct these er-
rors, we instructed annotators to compare two images: the
observed image at each detection and the background image
that includes only objects on the tabletop and no body parts of
chef and no objects in chef’s hands (Fig. 2). In other words,
the background image represents the state of objects on the
tabletop before the access, and annotators can check whether
the object is still on the tabletop or in hand by comparing
these two images. Regardless of failures in the detected re-
gion, annotators are requested to draw a rectangle that covers
every newly-put object and newly-taken object, with a label
of “put” or “taken.”

In the second step, annotators simulate in his/her head
how to cook the dish and list up object classes that might ap-
pear in cooking the recipe. In this step, they are allowed to
use any type of cooking utensils but are not allowed to rear-
range the recipe by replacing, adding, or omitting ingredients
and seasonings. For normalizing class names in the vocabu-
lary, we limit the names of cooking utensils, seasonings and
ingredients to those listed in the cooking ontology provided
by Nanba et al. [17].

There were some ingredients, seasonings, and utensils
that are not listed in the ontology. We instructed annotators
to notify the authors whenever an annotator felt it necessary
to annotate a new class name. We add the name as a new class
when the class name is not overlapped by any other objects in



the ontology.
There were other types of exceptions. The first type is

background objects, which is hardly related to food prepara-
tion, or difficult to distinguish even for a human. Dish de-
tergents and sponges do not appear in recipes. Stem ends of
foods, any other parts that we do not eat, or caps of seasoning
bottles are sometimes hard to distinguish. Such objects are
treated as a background class.

The other type of exception is a mixture of ingredients.
Those ingredients have no explicit names, thereby they have
no classes. To identify difference in such mixtures, annota-
tor will need to check what was done to it previously in the
video. To avoid such video check, we labeled such objects
as “mixture of ingredients” while keeping its recipe ID (e.g.,
a mixture of ingredients appeared in recipe 1 has a label of
“mixture-of-ingredients/recipe-1”). Although this way of an-
notation cannot distinguish the different types of mixture in
a recipe, recipe IDs make it possible to distinguish mixtures
that have appeared in different recipes at least. To automate
the annotation on the mixture of ingredients in a recipe, track-
ing the ingredients will be a necessary requirement. This is
reserved for our future work.

In the third step, annotators assign an appropriate object
class for each rectangle given in the first step. Here, the vo-
cabulary of object classes is given by the second step. All
the above steps are checked by different annotators for qual-
ity control. Namely, when two annotators annotated differ-
ently to the same target, the annotated data was passbacked to
another annotators. When the same target was passbacked re-
peatedly, a supervisor, which is one of the authors, intervene
to the annotation task.

Fig. 3 shows examples of object images cropped on the
basis of annotated rectangles. From these samples, we found
that there are several difficulties in recognizing objects ob-
served in food preparation. Firstly, ingredients appear in sev-
eral different states. Eggs are typical examples. Secondly,
containers, such as the chopping board and the pan, would
be observed with their contents in many of the observations.
Although containers do not appear in a recipe, the type of
used containers implicitly indicates the process that a chef is
performing. In this sense, containers are not a trivial recogni-
tion target. Most of the pre-existent methods for object detec-
tion do not assume that detection targets are laid under other
salient objects. Containers are also an interesting target of
recognition in food preparation.

4. OBJECT RECOGNITION AS A FULL
AUTOMATIC PROCCESSING RESULT

Although annotation data are useful for training classifiers,
it is not an output from an automatic computer processing.
To provide data that is obtained automatically, we applied the
state-of-the-art object classifier [18] both to the images ob-
tained as a result of annotation and to the images detected by
[16].

4.1. Settings for object recognition
Recently, many different structures of a convolutional neural
network (CNN) have been proposed, and pre-trained mod-
els for many of those structures are available. In this study,
we use the structure of Res-Nets [18] with 152 layers, which
achieved the best score in ILSVRC and COCO 2015 compe-
titions. These pre-trained models, however, are trained on a
general image dataset and are not specified to food prepara-
tion.

There are two different approaches to fit the model to a
specific problem: fine-tuning the original model and the use
of a custom-trained linear support vector machine (SVM) in-
stead of the last full-connection layer. We adopted the latter
approach because the vocabulary of recognition targets dif-
fers for each recipe. To optimize the vocabulary for each
recipe, we should prepare classifiers of the same number with
recipes. Because there can be a large number of recipes in a
system, it does not seem to be practical to store parameters
for the number of CNNs. Thus, we assume a system with
custom-trained SVMs, which costs less disk and memory re-
sources than CNNs.

The pre-trained model requires input images to be 224 ×
224 pixels. Resizing small object images might cause a bad
effect to the feature extraction. Hence, we set the minimum
cropping size of objects to be 128 × 128 pixels in order to
avoid enlarging object images to more than twice their size
while keeping the cropped image to contain only the target
object without its neighbors.

We used only object images with a “put” label as train-
ing/test data. Object images with “taken” label must have
the corresponding sample, which is the same object in the
same pose with a “put” label because of the algorithm in
[16]. The total number of training samples was 5943 with
180 categories. These samples are published with our dataset.
This number is not plenty when constructing a classifier from
scratch, but we believe it is enough when using pre-trained
CNN model and not applying fine-tuning on it. The linear
SVM maximize margin between categories, and this works
well on our setting to avoid overfitting.

4.2. Results and Discussion
A chef will touch and release the same object multiple times
during his/her food preparation. To avoid including the im-
ages derived from the same instance in both training and test
samples, we applied the cross-validation method for each ob-
servation. The annotation for some observations were imcom-
plete, and there are categories that appears only in one obser-
vation. We skipped to test samples from such observations
and categories. As a result, the number of tested samples was
4365 with 133 categories.

Table 1 shows the evaluation result from evaluating the
object recognition process using the cross-validation method.
In this setting, some cooking utensils appeared only in one
observation, and no training samples were available. Such
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Fig. 3. Examples of image data obtained through the annotation
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Fig. 4. CMC Curve for each category group.

objects were not counted. Inedible parts of the ingredients,
bottle caps, and other objects that hardly seem to relate to the
progress of food preparation are not counted in the results.

Results of utensils were more accurate than those of sea-
sonings and ingredients despite of a larger number of classes.
One reason for this is a condition of observations in the
KUSK Dataset. Because all videos were observed in the same
kitchen, the same instance of utensils appeared in other obser-
vations. In this sense, object recognition for utensils is nearly
equal to object identification. The above situation is the same
for seasonings; however, some of them have little difference
when observing from the top view. The observation should be
more angled for recognizing seasonings. Ingredients marked
the worst accuracy in the three categories. They are observed
in a variety of states, and two instances might have differ-
ent appearances even when they belong to the same class.
This led the lower accuracy of ingredients than other two cat-
egories.

In some cases, it is more important that the correct object
class is ranked in a higher place in the recognition result. To
evaluate the rank of the correct object class, we plot a cumu-
lative match characteristic curve (CMC Curve), as shown in
Fig. 4. The gradient of the CMC curve is relatively large until
we get to rank 3 or 4. The accuracy at rank 5 reaches 0.896
for ingredients, 0.908 for seasonings, 0.967 for utensils, and
0.942 for all categories. This indicates that it will be much
more efficient, for example, to optimize the recognition result
by using contextual information from recipe text.

5. CONCLUSION

The KUSK Object Dataset is aimed at being a baseline for CV
researchers who try to recognize objects on cooking counter.
Additionally, we also target NLP researchers who analyze
recipe texts with the observation of food preparation. Since
there is a large amount of procedural texts describing food
preparation, and a food preparation activity generally consists
of multiple complex processes, food preparation is a practi-
cal and applicative subject for the task of video-text trans-
lation. The provided dataset is an extension of the KUSK

Dataset, which has corresponding recipes and NLP results ob-
tained from those recipes. This will activate cross-sectional
researches between CV and NLP researchers for video-text
translation and other applications.

The dataset is organized by two components: annotation
of the records of access to objects, and the same type of data
obtained automatically from multiple CV processes. The re-
sult showed the difficulty in recognizing ingredients while
achieving a high accuracy at rank five on CMC curve. It is
remained as a future work to recognize ingredients more ac-
curately based on the context of food preparation, which is
typically obtained from recipe texts. The recognition method
using contextual information will also contribute video-text
alignment and translation.
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