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Abstract

We present a new stochastic approach to estimate accurately
phonemes and accents for Japanese TTS (Text-to-Speech) sys-
tems. Front-end process of TTS system assigns phonemes and
accents to an input plain text, which is critical for creating in-
telligible and natural speech. Rule-based approaches that build
hierarchical structures are widely used for this purpose. How-
ever, considering scalability and the ease of domain adaptation,
rule-based approaches have well-known limitations. In this pa-
per, we present a stochastic method based on an n-gram model
for phonemes and accents estimation. The proposed method es-
timates not only phonemes and accents but word segmentation
and part-of-speech (POS) simultaneously. We implemented a
system for Japanese which solves tokenization, linguistic anno-
tation, text-to-phonemes conversion, homograph disambigua-
tion, and accents generation at the same time, and observed
promising results.

1. Introduction
A TTS front-end process which is a prior step to speech synthe-
sis (a TTS back-end) plays an important role for creating intel-
ligible and natural speech. The role of the front-end system is to
analyze an input text and to assign some features that facilitate
synthesizing a natural voice. In particular, estimating phonemes
and accents are critical to system performance. Above all, these
errors spoil naturalness. Errors at assigning phonemes and ac-
cents occasionally change a meaning of the word and a semantic
structure of a text, and impede the correct understanding of the
spoken utterance.

Hierarchical prosodic structure generation, which employs
dynamic programming, decision trees, and various kinds of
statistical methods, is widely used to solve these problems
[2]. These methods generate syntactic and prosodic structure
step-by-step, such as lexical words with part-of-speech (POS),
prosodic words, prosodic phrases, and intonation phrases. How-
ever, in some languages some of these problems are inseparable.
In English and many other European languages most of the pho-
netically or prosodically ambiguous graphemes have more than
one possible grammatical or semantic category, depending on
its phonemes or prosody. For example, there are two prosodies
for “project” corresponding to on a noun and a verb in English.

Therefore, we will integrate as many disambiguation mod-
ules as possible into a single module based on stochastic meth-
ods, instead of solving each problem independently.

In this paper, we propose a method which enables the model
to estimate phonemes and accents simultaneously. The sys-
tem solves word segmentation 1, text-to-phonemes conversion,

1Word segmentation, which segments a text into words, is the most
fundamental process of Japanese, Chinese, etc.
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graph disambiguation, and accent generation at the same
In the experimental evaluation, we compared the perfor-

e of estimating phonemes and accents with a rule-based
that incorporates a stochastic POS tagger, a rule-based

dic phrase generator, and a rule-based accent generator.
result of experiments, accuracy of estimating phonemes
ccents by our method was higher than the rule-based ap-
h.

. Phonemes and Accents in Japanese
et of problems to be solved by a front-end is segmenting
ut text into words and estimating phonemes and accents
ch word. In this section, we explain the characteristics of
ese accentuation. And a prior art for accentuation method
panese is briefly described.

Word Accents in Japanese

itch accents of Japanese can take a binary value high (H)
(L), and is assigned to each mora. For example, a word

uto” (Kyoto) that has three morae (kyo,:,to) has three pitch
ts (H,L,L).

Table 1: Phonemes and Accents in the dictionary
surface w POS t phonemes s accents a

youto (Kyoto) prop kyo : to H L L
tawa- (tower) noun ta wa : H L L
hoteru (hotel) noun ho te ru H L L

he sequence of pitch accents for the word that has a com-
on of features 〈w, t, s〉 (where w is the spelling of a word,
OS, s is the phoneme sequence), is determined statically
dictionary. The sequence of accents in the dictionary

s the accents where the word appears individually. How-
the sequence of accents varies according to its context.
equence of accents (H,L,L) of “Kyouto” is changed
L,H,H) in a compound word “Kyouto tawa-” (Kyoto
in English), (see Table 2). Furthermore, for a compound
that consists of three words (see Table 3), “Kyouto tawa-
u” (Kyoto tower hotel), the accents of the “tawa-” (tower)
,H,H) is different from both the dictionary’s and the se-
e of accents in a compound word “Kyouto tawa-”. The

rect accents lead a listener to misunderstand context and
ctic structure of the text. For example, the listener may
stand “Kyouto tawa-” with a sequence of accents (H,
)(H, L, L) as “Kyou to tawa-” that means today and
.
s described above, accents of the word varies according
context. The front-end process has to estimate correctly
honeme sequence and the accents sequence considering



Table 2: Accents of “Kyouto” and “tawa-” in a compound word
“Kyouto tawa-”

surface w Kyouto (Kyoto) tawa- (tower)
POS t prop noun

phonemes s kyo : to ta wa :
accents a L H H H L L

Table 3: Accents of “Kyouto”, “tawa-” and “hoteru” in a com-
pound word “Kyouto tawa- hoteru”
surface w Kyouto (Kyoto) tawa- (tower) hoteru (hotel)

POS t prop noun noun
phonemes s kyo : to ta wa : ho te ru

accents a L H H H H H H L L

its context. It means, the problem to be solved by the sys-
tem is estimating correct triplets 〈w, s, a〉 from a given char-
acter sequence x. If estimating phoneme sequence or accents
sequence is incorrect, the listener would fail to disambiguat-
ing homonyms depending on its phonemes or prosody. And it
causes misunderstanding the meaning of the spoken utterance.
Thus, estimating phonemes and accents is an important task.

2.2. Prior Art

There was an attempt at solving this problem by rule sets. Sag-
isaka [3] gives a detailed rule set for accentuation in Japanese.
The model regards a sentence as a sequence of accents phrases
v = (v1v2 · · · vl). A procedure for accents generation is as
follows:

1. Determine 〈w, t, s〉 for each word by using a POS tagger
and a phoneme annotator.

2. Segment the sequence of words w = (w1w2 · · ·wh) in
the sentence into one or more than one accents phrases
wh

1 �→ vl
1 by considering POS.

3. Shift the accents in each accent phrase vi(1 ≤ i ≤ l).
A shift function for each word in vi can be acquired by
looking up a dictionary.

A weak point of the rule-based method is that the rule-
based method costs the maintenance of rules and dictionaries.
It is a time-consuming work to keep consistency of rules with
avoiding side effects. Furthermore, it requires many detailed
rules. And it depends on accuracy of the POS tagger and a POS
system of the POS tagger. This approach is highly language-
dependent.

3. Fully Stochatic Approach
As described above, the front-end system of a TTS system for
Japanese has to solve many problems. In this section, we pro-
pose a fully stochastic approach to solve four major problems
in TTS: tokenization, POS-tagging, phoneme annotation, and
accent annotation.

3.1. Morphological Analyzer Based on an N -gram Model

Initially the morphological analysis (tokenization and POS tag-
ging) was solved by rule-based systems like other natural
language processing (NLP) problems. Later inspired by the
speech recognition research which used a statistical language
model, the POS tagging for English or other European lan-
guages, whose words are delimited by white spaces, was solved
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MM-based models. Nagata [7] extended this method
guages that have no apparent word boundaries, such as
ese, Chinese, etc. His initial method used a POS-based n-
model, but, the state-of-the-art morphological analyzers

n n-gram model based on pairs of a spelling of a word w
s POS t as follows:

(〈w1, t1〉〈w2, t2〉 · · · 〈wh, th〉)

=

h+1Y
i=1

P (〈wi, ti〉|〈wi−k, ti−k〉 · · · 〈wi−1, ti−1〉),

k = n − 1, 〈wi, ti〉(i ≤ 0) is a special symbol
ting the beginning of the sentence, and 〈wh+1, th+1〉
ther special symbol indicating the end of the sentence.

tochastic morphological analyzer outputs the sequence of
with the highest probability under the constraint that the
tenation of the spellings is equal to the input sentence
x1x2 · · ·xh = w:

, t1〉〈w2, t2〉 · · · 〈wh, th〉)
argmax P (〈w1, t1〉〈w2, t2〉 · · · 〈wh, th〉|x1x2 · · ·xh).

Front-end Based on an N -gram Model

er to solve the major problems of a TTS front-end simul-
usly, we propose an extension of the statistical morpho-
l analyzer. First we define the unit of the n-gram model u
uadruplet of spelling of a word w, its POS t, its phoneme
nce s, and its accent sequence a, that is u = 〈w, t, s, a〉.
we introduce an n-gram model based on this unit. The
bility of a unit sequence u by the model Mu is as follows:

u(u1u2 · · ·uh) =

h+1Y
i=1

P (ui|ui−k · · ·ui−2ui−1). (1)

ar to the morphological analyzer, our fully stochastic
end outputs the sequence of units with the highest proba-
under the constraint that the concatenation of the spellings
al to the input sentence x = x1x2 · · ·xh = w:

û = argmax Mu(u1u2 · · ·uh|x1x2 · · ·xh). (2)

solution search problem is solved efficiently using dy-
programming method [8]. The computation complexity

ar to the number of characters contained in the input sen-
.

Unknown Word Model

ally the probability in Equation (1) is estimated from an
ated corpus using maximum likelihood estimation. In this
the probability of a sentence containing unknown words
ding to the model Mu is equal to zero and a unit sequence
ining unknown words is never selected as the solution by
tion (2), even when the sequence is the correct solution. In
pplications, however, input sentences sometimes contain
wn words. Thus the front-end has to be able to recognize
wn words and guess their POS, phoneme sequence, and
t sequence.
order to cope with the unknown word problem, we intro-

a special symbol UNKt representing all units whose POS is
of vocabulary V , which is a set of quadruplets. And P in
tion (1) is divided into two cases:

|ui−k · · ·ui−2ui−1) (3)

P (ui|ui−k · · ·ui−2ui−1) if ui ∈ V
P (UNKti |ui−k · · ·ui−2ui−1)Mx(ui|ti) if ui �∈ V,



where Mx is an unknown word model.
An unknown word model must have the following func-

tions:

• generate all possible character strings with a probability
greater than zero, 2

• guess the most probable POS, phoneme sequence, and
accent sequence given the unknown words spelling.

We propose n-gram models for each POS based on pairs of
character and phoneme sequence 〈x, s〉:

Mx(〈x1, s1〉〈x2, s2〉 · · · 〈xh′ , sh′〉|t) (4)

=

h′+1Y
i=1

P (〈xi, si〉|〈xi−k, si−k〉 · · · 〈xi−1, si−1〉, t).

The accent sequence of unknown word is fixed to be LHH...H
3 which was the most frequent one (37.28%) 4 in a learning
corpus. Finally the unknown word model Mx of our fully sta-
tistical front-end returns the following value as the generation
probability of quadruplet u = 〈w, t, s, a〉 given t:

Mx(u|t) =

8<
:

Mx(〈x1, s1〉〈x2, s2〉 · · · 〈xh′ , sh′〉|t)
if a = LHH...

0 otherwise,
(5)

where w = x1x2 · · ·xh′ and the length of the phoneme se-
quence is equal to that of the accent sequence (|s| = |a|).

Finally our statistical front-end calculates the probabilities
of the solution candidates based on Equations (1),(3), and (5)
and selects the most probable solution by Equation (2).

3.4. Parameter Estimation

The parameters in Equation (3) are estimated based on maxi-
mum likelihood estimation from a corpus whose sentences are
segmented into words annotated with their POS, phoneme se-
quence, and accent sequence. The learning corpus is divided
into nine parts and quadruples appearing only in a single par-
tial corpus are replaced with the unknown word symbol UNKt

according to the POS. The n-gram probabilities in Equation (3)
are interpolated with lower ones. The interpolation coefficients
are estimated by the deleted interpolation technique [9] using
nine partial corpora.

The parameters in Equation (4) are estimated from the
low frequent quadruplets which are replaced with the unknown
word symbol at the step of the quadruplet n-gram probability
estimation. From these low frequent quadruplet examples, pairs
of character sequence and phoneme sequence are extracted ac-
cording to the POS to make a learning corpus for each POS.
The character sequence and the phoneme sequence of a pair is
aligned automatically by looking the word up in a dictionary
containing all possible phoneme sequences for each character.
The parameters in Equation (4) for each POS t are estimated
from uniquely aligned examples 5. The n-gram probabilities in
Equation (4) are also interpolated with lower ones.

2This condition guarantees that our front-end outputs a solution for
any input sentence.

3The first accent is L. Following accents are H. The length of accents
H is equal to |a| − 1.

4The accent sequence can also be guessed by an unknown word
model. This may improve the performance of the front-end.

5Only a few examples had an alignment ambiguity.
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4. Evaluation
riments on the Japanese corpus were conducted to evalu-
e performance of the fully stochastic method explained in
n 3.

Corpus

orpus we used in the experiments contains Japanese sen-
s extracted from news paper articles, TV news, telephone
s, and so on. So the corpus contains various words, ex-

ions, and speech phenomena. Each sentence in the cor-
as segmented into words and each word w is annotated
ts POS t, its phoneme sequence s, and its accent sequence
sentence contains 21.6 words on average and the average
of the phoneme sequence of a word is 1.91. For training

ed 8, 800 sentences and the models were tested on 150
nces (see Table 4).

Table 4: Size of corpus
#sentences #words #chars

learning 8,800 190,318 285,082
test 150 2,130 3,170

Details of the Models

ilt the models according to three approaches as follows:

+Arule Rule-based accent generator

1. Regards a sentence as a sequence of words and
estimates the most probable triplet (〈w, t, s〉) se-
quence based on an bi-gram model.

2. Estimate boundaries of the prosodic phrases by us-
ing hand-crafted rules. The number of rules is
about 1, 000.

3. Assign accents for each word in each prosodic
phrase based on the method described in Section
2.2.

A Fully stochastic model

• Regards a sentence as a sequence of words and es-
timates the most probable quadruplet (〈w, t, s, a〉)
sequence based on a bi-gram model.

Fully stochastic model (without POS)

• Regards a sentence as a sequence of words es-
timates the most probable triplet (〈w, s, a〉) se-
quence based on a bi-gram model.

nly difference between WTSA and WSA is whether the
l incorporates POS or not. This is to investigate the neces-
f POS annotation to the learning corpus. Note that POS
ation is not always necessary for a TTS back-end.

Evaluation

5 shows the performances of estimation of phonemes and
ts. WTSA attains the highest accuracy 90.26% among
models. Accuracy of WSA is 89.72%. It is 0.54% lower
ccuracy of WTSA . Results conclude that fully stochastic
ls WTSA and WSA , perform better than the rule-based
l WTS+Arule . Part-of-speech is an effective feature for
me and accent estimation. The right most column in Table
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Figure 1: Learning curve for phonemes and accents. Solid lines
represent accuracy of 〈w, s〉 as a reference. Dotted lines repre-
sent accuracy of 〈w, s, a〉.

5 represents an approximate value of accuracy of accentuation :
accuracy(〈a〉) ∼ accuracy(〈w, s, a〉|〈w, s〉). WTSA attains
the highest accuracy 92.63%.

Figures 1 and 2 show the relations between the training cor-
pus size and accuracy. In Table 5, the right most points of each
line accord with fifth column 〈w, s〉 and sixth column 〈w, s, a〉,
respectively. Learning curves of 〈w, s, a〉 for WTSA and WSA
intersect a curve for WTS+Arule at about 8, 000 sentences.
The inclination of leaning curves implies that accuracy of full
stochastic models will expand a margin against the rule-based
model. From the results displayed in Figure 2, approximate ac-
curacy of accents for WTSA and WSA are approaching to 1.0
sharply, as contrasted with WTS+Arule that performs nearly
flat. As is to be expected, accuracy of the phonemes and accents
〈w, s, a〉 for WTSA and WSA is getting closer to accuracy of
phonemes, according to the size of the corpus.

About POS, small drops (0.37% for phonemes and 0.54%
for accents) of accuracy for the model without part-of-speech
WSA in performances can be seen. Annotating a little large
corpus without part-of-speech, and annotating a little small cor-
pus with part-of-speech are trade-off.

5. Conclusion
In this paper, we present a novel method for accurate phoneme
and accent estimation. Our n-gram based stochastic model can
solve tokenization, linguistic annotation, text-to-phonemes con-
version, homograph disambiguation, and accent generation si-
multaneously. Results from our experimental studies show that
the accuracy of a fully stochastic model exceeds the accuracy of
a rule-based method. Considering scalability and domain adap-
tation, the fully stochastic system is an adaptive framework that
requires only a corpus.
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Table 5: Model vs. accuracy in word segmentation, POS tagging, phoneme estimation, and accent estimation

#dist-words word seg.
〈w〉

word seg. &
POS
〈w, t〉

word seg. &
phonemes
〈w, s〉

word seg. &
pho.&acc.
〈w, s, a〉

accents (approx.)&
〈a〉 ∼

〈w, s, a〉|〈w, s〉
WTS+Arule 〈w, t, s〉 15,723 97.61 96.08% 97.69% 89.53% 91.65%

WTSA 〈w, t, s, a〉 21,164 97.87 95.79% 97.45% 90.26% 92.63%
WSA 〈w, s, a〉 19,560 97.64 N/A 97.08% 89.72% 92.42%
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