
A Machine Learning Approach
to Recipe Text Processing

Shinsuke Mori and Tetsuro Sasada and Yoko Yamakata and Koichiro Yoshino 1

Abstract. We propose a machine learning approach to recipe text
processing problem aiming at converting a recipe text to a work flow.
In this paper, we focus on the natural language processing (NLP)
such as word identification, named entity recognition, and syntac-
tic analysis to extract predicate-argument structures (tuples of a ver-
bal expression and its arguments) from a sentence in a recipetext.
Predicate-argument structures are subgraphs of the work flow of a
recipe.

We solve these problems by methods based on machine learning
techniques. The recipe domain is, however, different from the gen-
eral domain in which many language resources are available.And
we have to adapt NLP systems to the recipe texts by preparing anno-
tated data in the recipe domain. To reduce the cost of the adaptation,
we adopt a pointwise framework allowing to train analyzers from
partially annotated data.

The experimental results showed that an adaptation works well
for each NLP and with all the adaptations the accuracy of the entire
system increased. We can conclude that more adaptation workhelps
develop an accurate recipe-text-to-flow system.

1 Introduction

Cooking is one of the most important and complicated tasks indaily
life. Because of the variety and creativity of Japanese cooking, many
Japanese people cooking at home are interested in learning new
recipes. Many portal sites offer millions of recipes created by not
only professional chefs but also by people cooking at home. For ex-
ample, COOKPAD2 provides more than two millions of recipes sub-
mitted by house chefs, and the number is increasing.

However, having a multitude of recipes is not always a good thing.
Because consumer created recipe texts use a variety of expressions
and writing styles, there are many recipes which are different at the
word comparison level but describe the same cooking process. For
example, we found 4,529 recipes for “nikujaga” (a typical Japanese
dish)” on COOKPAD, but nobody knows how many unique cooking
processes these describe. This problem prevents users fromdiscov-
ering a new cooking processes for a dish. Thus it is importantto
abstract recipe texts and make it possible to measure the similarity
between them.

One of the best abstract representations for measuring the sim-
ilarity of recipes is a graph [16]. Since cooking is a sequence of
semi-ordered actions, we can represent it as a directed acyclic graph
(DAG), called a work flow, where nodes correspond to the cooking
actions and the final nodes correspond to dishes to be served.In fact,

1 Kyoto University, Japan, email:forest@i.kyoto-u.ac.jp
2 http://cookpad.com/ (accessed in June, 2012).

some recipe portal sites provide a work flow for their recipes3.
There have been some attempts at converting the texts of recipes

into a work flow. One of the pioneering works [6] proposed a semi-
automatic method for converting recipe texts in Japanese into work
flows. This work is, however, not mature from the viewpoint ofnat-
ural language processing (NLP) and graph theory. The authors just
use NLP tools designed for general domain texts such as newspa-
per articles with simply add some words in the recipe domain.For
this reason their NLP part is not good at the recipe writing style, or-
thographical variants, and others4. In addition, their work flow con-
struction process is based on manually created rules. Thus it worth
renewing this method by adopting state-of-the-art NLP technologies
and graph theory.

On this background, we propose a machine learning approach
aimed at converting recipe texts into work flows. In this paper, we
focus on NLPs and describe the procedure used to extract predicate-
argument structures (tuples of a verbal expression and its arguments)
from sentences in a recipe text. Predicate-argument structures are
subgraphs of the whole work flow of the recipe. We leave the work
flow construction for future work.

A machine learning approach provides following two advantages.
The first is that we can steadily increase the accuracy just byincreas-
ing the amount of training data. After constructing the system, we
only need to spend our time on generating annotated data. In addi-
tion, our framework allows us to increase the accuracy with mini-
mal cost. The second advantage is robustness. Rule-based methods
always suffer from the inability to handle exceptions such as ortho-
graphical variants, unusual wording, etc. Our approach allows us to
divide the recipe analysis procedures into algorithms based on ma-
chine learning and annotated data provided by annotators.

The recipe domain is, however, different from the general domain
in which many language resources are available. And we have to
adapt NLP modules to the recipe texts by preparing annotateddata
in the recipe domain. To reduce the cost of the adaptation, weadopt
a pointwise framework which allows us to train analyzers from par-
tially annotated data. Text processing systems in this framework do
not require whole sentences to be annotated (full annotation), but can
use sentences in which only domain specific words and expressions
are annotated with linguistic behavior (partial annotation).

In the evaluation, we report the accuracies of each NLP procedure
and the effects of the adaptation to the recipe domain, as well as the
accuracy of the entire system.

The design we describe in this paper is not limited to the recipe

3 For example http://www.cookingforengineers.com/ (ac-
cessed in June, 2012).

4 In Japanese for example, onion can be written in both ideograms or phonetic
alphabets.

domain. It is much more general and allows us to develop a textpro-
cessing system in a specific domain very quickly with low cost.

2 Recipe Text Analysis

In this section, we describe the details of our method for extracting
tuples of a predicate and its arguments, called a predicate-argument
structure, from sentences in recipe texts. Our method is divide into
three natural language processing (NLP) tasks: word recognition,
named entity recognition, and syntactic analysis. Since all of them
are based on machine learning, their accuracy is high as far as the
training data is available. In addition, we adopt a pointwise approach
which enables the tools for each NLP module to be trained frompar-
tially annotated data [12].

2.1 Recipe Text

A recipe text is composed of “the list of foods used as ingredients”
and “text describing the step-by-step instructions on how to cook the
dish.” In this paper, we focus on the text part from which the work
flow is constructed.

The text part consists of several short sentences describing chef
actions and food state transitions, which we call events. Sometimes
a sentence includes more than one event. From a linguistic view-
point, they are mostly straightforward because there is no modality
problems, less use of the passive form, and less tense variance. Thus,
almost all events can be represented by tuples of a predicateand its
arguments. For example, “cut an apple with a fruit knife” becomes

cut(obj.: an apple., with: a fruit knife),

where the predicate is “cut” and the arguments are “an apple”as the
object and “a fruit knife” connected to the predicate with a preposi-
tion “with.”

Differences between this kind of text and the general text used
to train the NLP modules, such as newspaper articles or dictionary
example sentences, causes problems. Thus, it is important to perform
domain adaptation for each NLP module.

2.2 Word segmentation

The first step of text processing is to identify words in sentences. For
languages such as Japanese and Chinese which do not have obvious
word boundary, the word identification problem is solved by seg-
menting a sentence into a word sequence. For inflective languages
such as English and French, this problem is solved by estimating the
canonical (dictionary) form of each word. In this step, we also esti-
mate part-of-speech (POS) tags for each word which are used during
the syntactic analysis.

The recipe texts we use in the experiment are written in Japanese.
Thus the first problem is word segmentation. The input is a sentence
as follows:

水４００ｃｃを鍋で煮立て、沸騰したら中華スープの素を
加えてよく溶かす。
(Heat 400 cc of water in a pot, and when it boils, add Chinese
soup powder and dissolve it well.)

And the output is a word sequence as follows:

水|４-０-０|ｃ-ｃ|を|鍋|で|煮-立-て|、|
沸-騰|し|た-ら|中-華|ス-ー-プ|の|素|を|
加-え|て|よ-く|溶-か|す|。

where “|” and “-” mean existence and non-existence of a word
boundary, respectively. Note that we divide inflectional endings from
the stem and we do not need stemming.

To solve the word segmentation problem in the recipe domain,
we adopt the pointwise approach [13]. The main reason is thatthis
approach allows us to train a model by referring to partiallyanno-
tated sentences, in which some parts between characters areanno-
tated with word boundary information and some are not, as in the
following example:

水 ４ ０ ０ ｃ ｃ を|鍋|で|煮-立-て|る
(Heat 400 cc of water in a pot)

where “ ” means the lack of word boundary information. In the
pointwise approach, we can focus our resources on the annotation
of difficult parts, for example on domain specific words and expres-
sions.

We formulate word segmentation as a binary classification prob-
lem as in [14], Our word segmenter, given a sentencex1x2 · · · xh,
estimates boundary tagbi between charactersxi andxi+1. Tagbi =
1 indicates that a word boundary exists, whilebi = 0 indicates that
a word boundary does not exist. This classification problem can be
solved by support vector machines [4].

We use information about the surrounding characters (character
and character-typen-grams), as well as the presence or absence of
words in the dictionary as features (see Table 1). Specifically dictio-
nary features for word segmentationls andrs are active if a string
of lengths included in the dictionary is present directly to the left
or right of the present word boundary, andis is active if the present
word boundary is included in a dictionary word of lengths.

Table 1. Features for word segmentation.

Type Feature strings
Character xl, xr, xl−1xl, xlxr,
n-gram xrxr+1, xl−1xlxr, xlxrxr+1

Character c(xl), c(xr),
type c(xl−1xl), c(xlxr), c(xrxr+1),
n-gram c(xl−2xl−1xl), c(xl−1xlxr),

c(xlxrxr+1), c(xrxr+1xr+2)
dictionary ls, rs, is

xl andxr indicate the characters to the left and right of the word boundary
in question. The functionc(·) converts a character sequence into the
character type sequence.ls, rs, andis represent the left, right, and inside
dictionary features.

2.3 Named Entity Recognition

A single word does not always correspond to an object or an action
in the real world, but a word sequence does. Thus the next stepof
our system is to recognize such word sequences, which are called
named entities (NE). For recipe text recognition, we adopt the fol-
lowing NE types: Food (F), Quantity (Q), Tool (T), Duration (D),
State (S), chef’s action (Ac), or foods’ action (Af).

NE recognition is normally solved as a sequence labeling problem
for each word based on the IOB2 tagging system. So the NE tags are
extended by addingB andI to denote the beginning and the continu-
ation of a named entity. In addition, words which is not a partof any
NE are annotated withO. Thus the tag set isT = { F, Q, T, D, S, Ac,
Af } × { B, I } ∪ O. For example, the following annotation means

w

P (y|w) 水 ４００ ｃｃ を · · ·

F-B 0.62 0.00 0.00 0.00 · · ·
F-I 0.37 0.00 0.00 0.00 · · ·
Q-B 0.00 0.82 0.01 0.00 · · ·

y Q-I 0.00 0.17 0.99 0.00 · · ·
T-B 0.00 0.00 0.00 0.00 · · ·

...
...

...
...

...
. . .

O 0.01 0.01 0.00 1.00

Figure 1. Best path search in named entity recognition.

that the word “水” (water) is a food, the word sequence “４００ｃ
ｃ” is a quantity, and the word “を” (the case marker for an object)
is not an NE.

水/F-B４００/Q-Bｃｃ/Q-Iを/O

For NE recognition we extend the pointwise approach to allowa
partially annotated corpus as a training data. First we estimate the
parameters of a classifier based on logistic regression [4] from fully
and/or partially annotated data. Then, given a word sequence, the
classifier enumerates all possible tags for each word with their prob-
abilities (see Figure 1). Finally our NE recognizer searches for the
tag sequence of the highest probability satisfying the constraints5.

2.4 Syntactic Analysis

The final disambiguation process used to extract predicate-argument
tuples is to determine the syntactic structure of words and NEs in a
sentence. This paper follows the standard setting of recentwork on
dependency parsing. Each word in a sentence syntactically modifies
only one other word, called its head, except for the head wordof the
sentence [3]. Thus the output is a tree where the nodes are words and
the arcs express a dependency relationship.

Formally given as input a sequence of words,w =
〈w1, w2, . . . , wn〉, the goal of syntactic analysis is to output a de-
pendency treed = 〈d1, d2, . . . , dn〉, wheredi = j when the head
of wi is wj . We assume thatdi = 0 for some wordwi in a sentence,
which indicates thatwi is the head of the sentence.

State-of-the-art syntactic analyzers (parser) are based on machine
learning. The parameters are estimated from an annotated corpus in
the general domain. Thus when we think of applying the parserto
recipe texts, once again domain adaptability is an important point.
For this reason, we adopt a pointwise approach [5]. A parser based
on this approach allows us to estimate the parameters from partially
annotated data in addition to normal fully annotated data. This parser
is one of several based on the maximum spanning tree (MST) frame-
work [9].

At the step of analysis, first the parser assigns a scoreσ(di) to
each edge (i.e. dependency)di, then finds a dependency tree,d̂, that
maximizes the sum of the scores of all the edges.

d̂ = argmax
d

∑

d∈d

σ(d). (1)

In the training phaseσ(di) is estimated for eachwi independently
by a log-linear model [1]. Contrary to the original MST parser that

5 For example, “F-B S-I” is invalid.

F1 The distance between a dependent word and its candidate head.
F2 The surface forms of the dependent and head words.
F3 The parts-of-speech of the dependent and head words.
F4 The surface forms of up to three words to the left of the depen-

dent and head words.
F5 The surface forms of up to three words to the right of the depen-

dent and head words.
F6 The parts-of-speech of the words selected for F4.
F7 The parts-of-speech of the words selected for F5.

Figure 2. Features for syntactic analysis.

estimatesσ(d) with a perceptron-like algorithm that optimizes the
score of entire dependency trees, a pointwise parser calculates the
probability of a dependency labelingp(di = j) for a wordwi from
its context, which is a tuplex = 〈w, t, i〉, wheret = 〈t1, t2, . . . , tn〉
is a sequence of POS tags assigned tow by a POS tagger. The con-
ditional probabilityp(j|x) is given by the following equation:

p(j|x, θ) =
exp (θ · φ(x, j))∑

j′∈J
exp (θ · φ(x, j′))

. (2)

The feature vectorφ = 〈φ1, φ2, . . . , φm〉 is a vector of non-negative
values calculated from features on pairs(x, j), with corresponding
weights given by the parameter vectorθ = 〈θ1, θ2, . . . , θm〉. The
features are listed in Figure 2. We estimateθ from sentences anno-
tated with dependencies. It should be noted that the probability p(di)
depends only oni, j, and the inputsw, t, which ensures that it is
estimated independently for eachwi. The pointwise approach enjoys
greater flexibility, which allows for training from partially annotated
corpora. Because parameter estimation does not involve computing
d̂, the parser does not apply the maximum spanning tree algorithm
in training.

2.5 Predicate-Argument Structure Analysis

After the three disambiguation procedures described above, the in-
put sentence is transformed into a dependency tree where nodes are
words and some subtrees are annotated with an NE tag. Then we ex-
ecute the following steps from the beginning of the text to the end
to extract tuples of a predicate and its arguments, called predicate-
argument structure, from it.

1. Find the next NE tagged withAc or Af.

煮立て/Ac (boil)

2. Set that NE as the predicate with unknown arguments.

煮立て (??, ??, ...)

3. Enumerate all the NE sequences depending on the predicateby
referring to the dependency tree. Note that many of them are con-
nected indirectly to the predicate with a case marker which is ap-
parent from the POS in Japanese.

/水/F (water) /４００ｃｃ/Qを (obj., case marker)
/鍋/T (pot)で (by, case marker)

4. Construct a predicate-argument structure using the predicate and
these sequences. Note that we add a case marker for each argu-
ment tagged withF (food) orT (tool) to clarify the semantic role
(subject, object, etc.) of the NE in regards to the predicate.

Table 2. Fully annotated corpora.

corpus name #sentences #words #characters #NEs #dependencies
BCCWJ 53,899 1,275,135 1,834,784 – –
recipe 242 4,704 7,023 1,523 –

Dict. sentences 11,700 147,809 197,941 – 136,109
Newspaper art. 9,023 263,425 398,569 – 254,402

recipe 724 13,150 19,966 3,797 12,426

煮立て (obj.:水-４００-ｃｃ,で:鍋)
boil(obj.:water 400cc, by:pot)

The procedure described above does not cover some linguistic
phenomena such as zero-anaphora, causative form, relativeclause,
etc. These phenomena require some additional disambiguation be-
cause they span more than one sentences. The text processingcom-
ponent could output possible candidates with probability so that the
work flow construction component can execute disambiguation as an
optimization problem. We leave this part as future work.

3 Evaluation

We developed a recipe text analysis system based on the framework
we explained in Section 2 In this section, we present experimental
results on real recipe texts and evaluate our framework.

3.1 Experimental Settings

There are various language resources available in the general domain.
But are not suitable for recipe text analysis because of domain differ-
ences. But they can be used for parameter estimation of baseline NLP
systems. For the word segmentation step we use the Balanced Cor-
pus of Contemporary Written Japanese (BCCWJ) [8] which contains
sentences annotated with word boundary information and words an-
notated with POS tags. We also used a dictionary UniDic (version
1.3.12)6 and the list of arabic numbers, first names, family names,
and signs. The total number of entries is 423,489 words. For the syn-
tactic analysis step we use sentences extracted from a dictionary [7]
andNikkei newspaper articles7. These sentences are annotated with
word boundary information and the dependency structure. NEs to
be recognized are highly domain dependent. NEs in the general do-
main such as names of people, names of organizations, and dates,
etc. are not useful in recipe text processing. But we need NEsspe-
cific to the recipe domain as enumerated in Subsection 2.3. Sowe
prepared a small recipe corpus annotated with these NEs. Table 2
shows the specifications of these fully annotated corpus. Inaddition
we prepared a partially annotated corpus in the recipe domain for
each procedure. The details are described in each subsection. The
test data is randomly selected 100 recipes taken from COOKPAD in
all the evaluations.

3.2 Word Segmentation

The first step is word segmentation. The baseline system, KyTea8

[13], is based on a linear SVM [4], which decides if there is a word

6 Available athttp://www.tokuteicorpus.jp/dist/ (accessed in
June, 2012).

7 http://e.nikkei.com/ (accessed in June, 2012)
8 Available at http://www.phontron.com/kytea/ (accessed in

June, 2012).

煮立て (Freq=1497)
中 火 で|煮-立-て|、 （ １ ） の ほ う れ ん · · ·
Ａ を|煮-立-て|、 （ １ ） の し い た け ・ · · ·
鍋 に Ｂ を 加 え|煮-立-て|る 。

Figure 3. Partial annotation for word segmenter adaptation. An annotator
checks if a string “煮立て” (boil) is a word in the context. The meaning of

the symbols between characters are explained in Subsection2.2.

 95.0

 95.2

 95.4

 95.6

 95.8

 96.0

 0 1 2 3 4 5 6 7 8
Work time [hour]

F
-m

easure

Figure 4. Learning curve of word segmentation.

boundary or not at each point. The parameters are estimated from the
BCCWJ, the dictionary sentences, and newspaper articles.

For the domain adaptation, we first extracted unknown word can-
didates from a large raw recipe text by the distributional analy-
sis [10]. Then we showed an annotator three occurrences for each
unknown word candidate with its contexts in keyword in context
(KWIC) style shown in Figure 3. Then the annotator checked ifthese
strings are a word in that context and changed the word boundary
information if necessary. The total work time was eight hours. We
measured the word segmentation accuracy after each hour.

As an evaluation measure, we use word F-measure following [11].
Roughly speaking, the F-measure represents the ratio of thecorrectly
recognized words over all the words.

Figure 4 shows the learning curve of word segmentation. The ac-
curacy of the baseline is lower than the accuracy in the general do-
main (98.13%) reported in [13]. With adding a partially annotated
corpus by checking the unknown word candidates, the accuracy in-
creases gradually. From the curve, it can be said that the accuracy has
not been saturated and more annotation work contributes to afurther

 52

 54

 56

 58

 60

62

64

66

68

 0 2 4 6 8 10
 10 10 10 10 10 10

Training corpus size

F
-m

easure

Figure 5. Learning curve of named entity recognition.

improvement.

3.3 Named Entity Recognition

The next step is named entity recognition. The baseline system first
enumerates all possible tags for each word with their probabilities
using logistic regression. The parameters are estimated from 1/10 of
the recipe in Table 2 corpus whose words are annotated with NEtags.
Then our NE recognizer searches for the best tag sequence.

For the domain adaptation, we simply increased the trainingdata
size from 1/10 to 10/10. The total annotation time was about five
hours. We measured the named entity recognition accuracy for the
training size of 1/10, 2/10, ..., 10/10.

The evaluation measurement is F-measure, the harmonic meanof
the precision and the recall [2]. The precision is the ratio of the NEs
correctly recognized by the system over all the recognized NEs and
the recall is the ratio of the correctly recognized over all the NEs in
the test corpus.

Figure 5 shows the learning curve of named entity recognition.
The accuracy of the baseline, the left most point in the graph, is
very low compared with the F-measure of 80.17 reported in [15] for
named entity recognition in the general domain. The reason is that
the training data size of the baseline is much smaller than 12,000
sentences used in [15]. By adding annotated sentences, the accuracy
increases steadily. But it is still lower than the F-measureof 80.17 re-
ported in the general domain. This shows that we need more training
data.

3.4 Syntactic Analysis

The last disambiguation is syntactic analysis. The parser,EDA9 [5],
requires words annotated with POS tags. But the training corpus and
the test corpus (see Table 2) are not annotated with POS tags,so we
used a Japanese POS tagger, KyTea [13], trained on the BCCWJ.
Then we built the baseline parser from the dictionary sentences and
newspaper articles.

9 Available at http://www.ar.media.kyoto-u.ac.jp/
members/flannery/eda/index en.html (accessed in June,
2012).

 92.2

 92.4

 92.6

 92.8

 93.0

 93.2

 0 1 2 3 4 5 6 7 8
Work time [hour]

A
ccuracy

Figure 6. Learning curve of syntactic analysis.

For the domain adaptation, first we constructed a dictionarycon-
taining all the sequences of a noun and a postposition appearing in
the training corpus. Then we searched for new noun-postposition se-
quences in the raw recipe text from the beginning and showed them
to an annotator. Then he/she annotated them with the dependency
destination (normally the verb). The total work time was 8 hours. We
measured the syntactic analysis accuracy after each hour.

The evaluation measurement is the accuracy defined as the ratio of
words with the correct dependency destination over all the words. We
discarded the last word in the sentences because in written Japanese
it is always the sentence head.

Figure 6 shows the learning curve of syntactic analysis. Theaccu-
racy of the baseline, the left most point in the graph, is lower than
the accuracy 96.83%10 reported in [5]. The reason is the difference
in domain between the training data and the test data. By adding a
partially annotated corpus prepared by checking new sequences of a
noun and a postposition appearing in the raw recipe text, theaccu-
racy increased gradually. From the curve, it can be said thatwe can
expect further improvements just by continuing the annotation work.

3.5 Overall System

Finally we measured the accuracy of the overall system before and
after all the adaptations. In this experiment the input is a sentence.
The sentence is automatically segmented into words, named entities
are automatically extracted, and the sentence is convertedautomati-
cally into a dependency tree.

Similar to named entity recognition the evaluation measurefor the
overall system is F-measure. The only difference lies in thedefinition
of the units to be recognized. Here they are the predicate-argument
pairs. For example, the predicate-argument structure shown in the
end of Section 2 has two following pairs:

1. 〈煮立て, obj.:水-４００-ｃｃ 〉 〈boil, obj.:water 400cc〉
2. 〈煮立て,で:鍋 〉 〈boil, by:pot〉

A pair is correct if and only if the predicate and its argumentare the
same including the case markers.

10 The parser was trained on the dictionary sentences and tested on different
sentences in the same domain

The F-measure of the cascade combination of the baseline systems
was 42.01. After the adaptations of all the procedures, the F-measure
increased to be 58.27. The baseline accuracy is low but afterthe adap-
tations the performance improved drastically by 28.0% error elimi-
nation. The accuracy after the adaptations, still, may not be sufficient
for the succeeding work flow construction process. The totalwork
time for corpus annotation is only 8+5+8 = 21 hours. We can easily
double or triple the work time to have a further improvement.

The framework of all the procedures we propose in this paper re-
quires only annotations to words or expressions specific in the recipe
domain and allows us to improve the overall system performance
very easily. From the comparison among the learning curves of all
the procedures (Figure 4, 5, 6), it may be a good strategy to spend our
annotation work more on NE, since the baseline accuracy of named
entity extraction is much lower than the other procedures and the
accuracy gain realized by the adaptation is much larger.

4 Conclusion

In this paper, we presented a machine learning approach to recipe
text processing aiming at converting a recipe text to a work flow. We
focused on NLPs and describe the procedures to extract predicate-
argument structures from a sentence in a recipe text. In the evalua-
tion, we reported the accuracies of each NLPs and the effect of the
adaptation to the recipe domain as well as the accuracy of theentire
system. The design we describe in this paper is general and allows us
to develop a text processing system in a certain domain very quickly
with low cost.

For recipe work flow construction, the problems of some linguistic
phenomena and the connection of predicate-argument structures are
still remains. We will give a solution to these problems withthe same
design philosophy.

Acknowledgement

This work was supported by Grant-in-Aid for Scientific Research of
the government of Japan (KAKENHI 23500177 and 23700144). The
authors are also thankful to Mr. Yuichi Sugiyama for his annotation
work.

REFERENCES

[1] Vincent J. Della Pietra Adam L. Berger, Stephen A. Della Pietra, ‘A
maximum entropy approach to natural language processing’,Computa-
tional Linguistics, 22(1), (1996).

[2] Andrew Borthwick, A Maximum Entropy Approach to Named Entity
Recognition, Ph.D. dissertation, New York University, 1999.

[3] Sabine Buchholz and Erwin Marsi, ‘Conll-x shared task onmultilin-
gual dependency parsing’, inProceedings of the Tenth Conference on
Computational Natural Language Learning, pp. 149–164, (2006).

[4] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and
Chih-Jen Lin, ‘LIBLINEAR: A library for large linear classification’,
Journal of Machine Learning Research, 9, 1871–1874, (2008).

[5] Daniel Flannery, Yusuke Miyao, Graham Neubig, and Shinsuke Mori,
‘Training dependency parsers from partially annotated corpora’, inPro-
ceedings of the Fifth International Joint Conference on Natural Lan-
guage Processing, (2011).

[6] Reiko Hamada, Ichiro Ide, Shuichi Sakai, and Hidehiko Tanaka, ‘Struc-
tural analysis of cooking preparation steps in japanese’, in Proceedings
of the fifth international workshop on Information retrieval with Asian
languages, number 8 in IRAL ’00, pp. 157–164, (2000).

[7] Donald Keene, Hiroyoshi Hatori, Haruko Yamada, and Shouko Irabu,
Japanese-English Sentence Equivalents, Asahi Press, Electronic book
edn., 1992.

[8] Kikuo Maekawa, ‘Balanced corpus of contemporary written japanese’,
in Proceedings of the 6th Workshop on Asian Language Resources, pp.
101–102, (2008).

[9] Ryan McDonald, Fernando Pereira, Kiril Ribarov, and JanHajič, ‘Non-
projective dependency parsing using spanning tree algorithms’, inCon-
ference on Empirical Methods in Natural Language Processing, pp.
523–530, (2005).

[10] Shinsuke Mori and Makoto Nagao, ‘Word extraction from corpora and
its part-of-speech estimation using distributional analysis’, in Proceed-
ings of the 16th International Conference on ComputationalLinguis-
tics, (1996).

[11] Masaaki Nagata, ‘A stochastic japanese morphologicalanalyzer using
a forward-dp backward-a∗ n-best search algorithm’, inProceedings of
the 15th International Conference on Computational Linguistics, pp.
201–207, (1994).

[12] Graham Neubig and Shinsuke Mori, ‘Word-based partial annotation for
efficient corpus construction’, inProceedings of the Seventh Interna-
tional Conference on Language Resources and Evaluation, (2010).

[13] Graham Neubig, Yosuke Nakata, and Shinsuke Mori, ‘Pointwise pre-
diction for robust, adaptable japanese morphological analysis’, in Pro-
ceedings of the 49th Annual Meeting of the Association for Computa-
tional Linguistics, (2011).

[14] Manabu Sassano, ‘An empirical study of active learningwith support
vector machines for japanese word segmentation’, inProceedings of the
40th Annual Meeting of the Association for Computational Linguistics,
pp. 505–512, (2002).

[15] Kiyotaka Uchimoto, Qing Ma, Masaki Murata, Hiromi Ozaku, and Hi-
toshi Isahara, ‘Named entity extraction based on a maximum entropy
model and transformation rules’, inProceedings of the 38th Annual
Meeting of the Association for Computational Linguistics, pp. 326–335,
(2000).

[16] Liping Wang, Qing Li, Na Li, Guozhu Dong, and Yu Yang, ‘Substruc-
ture similarity measurement in chinese recipes’, inProceedings of the
17th international conference on World Wide Web, number 10, pp. 978–
988, (2008).

