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Abstract. We propose a machine learning approach to recipe texome recipe portal sites provide a work flow for their recibes
processing problem aiming at converting a recipe text todfiow. There have been some attempts at converting the texts glgeci
In this paper, we focus on the natural language processig’XN into a work flow. One of the pioneering works [6] proposed aisem
such as word identification, named entity recognition, ayta-  automatic method for converting recipe texts in Japandsework
tic analysis to extract predicate-argument structurgsétuof a ver-  flows. This work is, however, not mature from the viewpoinnat-
bal expression and its arguments) from a sentence in a ré®ipe  yral language processing (NLP) and graph theory. The asijlist
Predicate-argument structures are subgraphs of the warkdl@  yse NLP tools designed for general domain texts such as mewsp
recipe. per articles with simply add some words in the recipe dom@&an.
We solve these problems by methods based on machine learningis reason their NLP part is not good at the recipe writiryesior-
techniques. The recipe domain is, however, different framgden-  thographical variants, and oth&rén addition, their work flow con-
eral domain in which many language resources are avail&lé.  struction process is based on manually created rules. Thusrth
we have to adapt NLP systems to the recipe texts by prepamim@-a  renewing this method by adopting state-of-the-art NLP tietthgies
tated data in the recipe domain. To reduce the cost of theatitap and graph theory.
we adopt a pointwise framework allowing to train analyzewstf On this background, we propose a machine learning approach
partially annotated data. aimed at converting recipe texts into work flows. In this papee
The experimental results showed that an adaptation workls wefocus on NLPs and describe the procedure used to extradtated
for each NLP and with all the adaptations the accuracy of fitieee  argument structures (tuples of a verbal expression andjtsrents)
system increased. We can conclude that more adaptationhetpk  from sentences in a recipe text. Predicate-argument stestare
develop an accurate recipe-text-to-flow system. subgraphs of the whole work flow of the recipe. We leave thekwor
flow construction for future work.
. A machine learning approach provides following two advgeta
1 Introduction The first is that we can steadily increase the accuracy justdrgas-
ing the amount of training data. After constructing the sgstwe
Cooking is one of the most important and complicated taskiily ~ only need to spend our time on generating annotated dataldin a
life. Because of the variety and creativity of Japanese icgpknany  tjon, our framework allows us to increase the accuracy withi-m
Japanese people cooking at home are interested in leareing n mga| cost. The second advantage is robustness. Rule-bashddsie
recipes. Many portal sites offer millions of recipes crelaby not  ajways suffer from the inability to handle exceptions sushogho-
only professional chefs but also by people cooking at horoeeR-  graphical variants, unusual wording, etc. Our approadwalius to
ample, COOKPAB provides more than two millions of recipes sub- gjvide the recipe analysis procedures into algorithms dasema-
mitted by house chefs, and the number is increasing. chine learning and annotated data provided by annotators.
However, having a multitude of recipes is not always a goath The recipe domain is, however, different from the generataio
Because consumer created recipe texts use a variety ofssigme  jn which many language resources are available. And we have t
and writing styles, there are many recipes which are diffeaéthe  agapt NLP modules to the recipe texts by preparing annotaéal
word comparison level but describe the same cooking proé@ss i the recipe domain. To reduce the cost of the adaptatioradeet
example, we found 4,529 recipes forikujagd (a typical Japanese g pointwise framework which allows us to train analyzersrfioar-
dish)” on COOKPAD, but nobody knows how many unique cooking tja|ly annotated data. Text processing systems in this évaonk do
processes these describe. This problem prevents usersifsopv- ot require whole sentences to be annotated (full annatatot can
ering a new cooking processes for a dish. Thus it is impotant yse sentences in which only domain specific words and esxpnesss
abstract recipe texts and make it possible to measure thlstyn ~ 5re annotated with linguistic behavior (partial annotaio
between them. In the evaluation, we report the accuracies of each NLP piree
One of the best abstract representations for measuringihie s gnd the effects of the adaptation to the recipe domain, dsaw¢he
ilarity of recipes is a graph [16]. Since cooking is a seqeent accuracy of the entire system.
semi-ordered actions, we can represent it as a directetiagyaph The design we describe in this paper is not limited to thepeci
(DAG), called a work flow, where nodes correspond to the aapki
actions and the final nodes correspond to dishes to be sénviadt,

3 For example ht t p: / / www. cooki ngf or engi neers. com (ac-
cessed in June, 2012).
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domain. It is much more general and allows us to develop gtext
cessing system in a specific domain very quickly with low cost

2 Recipe Text Analysis

In this section, we describe the details of our method foragking

tuples of a predicate and its arguments, called a predargiement
structure, from sentences in recipe texts. Our method igs@iwnto

three natural language processing (NLP) tasks: word retogn

named entity recognition, and syntactic analysis. Sintefahem

are based on machine learning, their accuracy is high assftrea
training data is available. In addition, we adopt a poinenapproach
which enables the tools for each NLP module to be trained fram

tially annotated data [12].

2.1 Recipe Text

A recipe text is composed of “the list of foods used as ingret”
and “text describing the step-by-step instructions on hmaook the
dish.” In this paper, we focus on the text part from which tharkv
flow is constructed.

The text part consists of several short sentences desgrabief
actions and food state transitions, which we call eventmedimes
a sentence includes more than one event. From a linguistig-vi
point, they are mostly straightforward because there is ndatity
problems, less use of the passive form, and less tense earighus,
almost all events can be represented by tuples of a predicatés
arguments. For example, “cut an apple with a fruit knife” trees

cut(obj.: an apple., with: a fruit knife),

where the predicate is “cut” and the arguments are “an agddhe
object and “a fruit knife” connected to the predicate withragosi-
tion “with.”

Differences between this kind of text and the general tegtus
to train the NLP modules, such as newspaper articles omdiaty
example sentences, causes problems. Thus, it is impootpetform
domain adaptation for each NLP module.

2.2 Word segmentation

The first step of text processing is to identify words in seoés. For

languages such as Japanese and Chinese which do not havesobvi

word boundary, the word identification problem is solved bg-s
menting a sentence into a word sequence. For inflective &ayesu
such as English and French, this problem is solved by estigtte
canonical (dictionary) form of each word. In this step, wsoasti-
mate part-of-speech (POS) tags for each word which are usatyd
the syntactic analysis.

The recipe texts we use in the experiment are written in Jeggan
Thus the first problem is word segmentation. The input is tesee
as follows:

K400cchMTHIT, WL -6 hEEZR—-T D%
AT ELENT,

(Heat 400 cc of water in a pot, and when it boils, add Chinese
soup powder and dissolve it well.)

And the output is a word sequence as follows:

Kl 4-0-0]| c-c| %] 4| T| &-37-T|. |
- Bl L | 72- 5| - #E| - —- T | 0| F| %
- A | k- < B2 T

o

where | ” and “-” mean existence and non-existence of a word
boundary, respectively. Note that we divide inflectionaliegs from
the stem and we do not need stemming.

To solve the word segmentation problem in the recipe domain,
we adopt the pointwise approach [13]. The main reason istlimat
approach allows us to train a model by referring to partialiyo-
tated sentences, in which some parts between characteaniaoe
tated with word boundary information and some are not, afién t
following example:

K,4.,0_0_c_c %|# Tl & -7 5
(Heat 400 cc of water in a pot)

where “ " means the lack of word boundary information. In the
pointwise approach, we can focus our resources on the dimmta
of difficult parts, for example on domain specific words angres-
sions.

We formulate word segmentation as a binary classificatiob{pr
lem as in [14], Our word segmenter, given a sentenge, - - - xp,
estimates boundary tdg between charactens, andx;+1. Tagb; =
1 indicates that a word boundary exists, wtiile= 0 indicates that
a word boundary does not exist. This classification problam fwe
solved by support vector machines [4].

We use information about the surrounding characters (ctera
and character-type-grams), as well as the presence or absence of
words in the dictionary as features (see Table 1). Spedifidatio-
nary features for word segmentatibnandr; are active if a string
of length s included in the dictionary is present directly to the left
or right of the present word boundary, aindis active if the present
word boundary is included in a dictionary word of length

Tablel. Features for word segmentation.

Type Feature strings

Character | z;, xr, x;_12], T Tr,

n-gram TrLr41, L]—1Z[Tr, T]TrTr41

Character | c(x;), c(xr),

type c(zi—127), c(x120), (TP Trpt),

n-gram c(zi—azi—121), c(T1—1712N),
(21 TrTry1), (TrTry1Tr42)

dictionary | Is, s, is

x; andz, indicate the characters to the left and right of the word loiauy
in question. The functior(-) converts a character sequence into the
character type sequende, rs, andis represent the left, right, and inside
dictionary features.

2.3 Named Entity Recognition

A single word does not always correspond to an object or doract
in the real world, but a word sequence does. Thus the nextadtep
our system is to recognize such word sequences, which desical
named entities (NE). For recipe text recognition, we adbptfol-
lowing NE types: FoodK), Quantity Q), Tool (T), Duration D),
State §), chef’s action Ac), or foods’ action Af).

NE recognition is normally solved as a sequence labelinglpro
for each word based on the IOB2 tagging system. So the NE tags a
extended by addinBg andlI to denote the beginning and the continu-
ation of a named entity. In addition, words which is not a paany
NE are annotated wit®. Thusthetagsetis ={F, Q, T, D, S, Ac,
Af } x { B, 1 } U O. For example, the following annotation means



w
Plylw) | X 400 cc %

F-B 0.62 0.00 0.00 0.00 ---
F-l 0.37 0.00 0.00 0.00 ---
Q-B 0.00 0.82 0.01 0.00 ---

y Q- 0.00 0.17 099 0.00 ---
T-B 0.00 0.00 0.00 0.00 ---

(0] 0.01 0.01 0.00 1.00

Figurel. Best path search in named entity recognition.

that the word “K” (water) is a food, the word sequencd ‘0 O ¢
c” is a quantity, and the word#” (the case marker for an object)
is not an NE.

KIF-B 4 00/Q-B cc/Q-l1 #/O

For NE recognition we extend the pointwise approach to alow
partially annotated corpus as a training data. First wanedé the
parameters of a classifier based on logistic regressiond4j fully
and/or partially annotated data. Then, given a word seqyethe
classifier enumerates all possible tags for each word witin gob-
abilities (see Figure 1). Finally our NE recognizer seascfwe the
tag sequence of the highest probability satisfying the aimgs.

2.4 Syntactic Analysis

The final disambiguation process used to extract predeapement
tuples is to determine the syntactic structure of words aBd M a
sentence. This paper follows the standard setting of regerik on
dependency parsing. Each word in a sentence syntacticaltlfies
only one other word, called its head, except for the head wbtde
sentence [3]. Thus the output is a tree where the nodes adsaad
the arcs express a dependency relationship.

Formally given as input a sequence of worday =
<’LU17 wa, ...
pendency treel = (di,d2,...,dn), whered; = j when the head
of w; isw;. We assume that; = 0 for some wordw; in a sentence,
which indicates thatv; is the head of the sentence.

State-of-the-art syntactic analyzers (parser) are basedazhine
learning. The parameters are estimated from an annotatpdn
the general domain. Thus when we think of applying the patser
recipe texts, once again domain adaptability is an impopamt.
For this reason, we adopt a pointwise approach [5]. A parasedh
on this approach allows us to estimate the parameters frotialpa
annotated data in addition to normal fully annotated daltés parser
is one of several based on the maximum spanning tree (MShgfra
work [9].

At the step of analysis, first the parser assigns a se¢ik) to
each edge (i.e. dependenck) then finds a dependency trek that
maximizes the sum of the scores of all the edges.

d = argmax Z o(d).
d
ded

@)

In the training phase (d;) is estimated for eactw; independently
by a log-linear model [1]. Contrary to the original MST par#eat

5 For example, F-B S-I” is invalid.

F1 The distance between a dependent word and its candidate head

F2 The surface forms of the dependent and head words.

F3 The parts-of-speech of the dependent and head words.

F4 The surface forms of up to three words to the left of the depen-
dent and head words.

F5 The surface forms of up to three words to the right of the depen
dent and head words.

F6 The parts-of-speech of the words selected for F4.

F7 The parts-of-speech of the words selected for F5.

Figure2. Features for syntactic analysis.

estimatess(d) with a perceptron-like algorithm that optimizes the
score of entire dependency trees, a pointwise parser asdsuthe
probability of a dependency labelindd; = j) for a wordw; from

its context, which is atuple = (w, t, ), wheret = (t1,t2,...,tn)

is a sequence of POS tags assignettby a POS tagger. The con-
ditional probabilityp(j|z) is given by the following equation:

exp (0 - ¢(, 7))
ileT exp (0 : d)(mhj/)) .

The feature vectop = (¢1, ¢2, . .., dm) is a vector of non-negative
values calculated from features on pdits 7), with corresponding
weights given by the parameter vectbr= (61,0-,...,60,). The
features are listed in Figure 2. We estimét&om sentences anno-
tated with dependencies. It should be noted that the pristyapid;)
depends only on, 7, and the inputaw, ¢, which ensures that it is
estimated independently for each. The pointwise approach enjoys
greater flexibility, which allows for training from partiglannotated
corpora. Because parameter estimation does not involveiimy
d, the parser does not apply the maximum spanning tree aigorit
in training.

p(jlz,0) = D @)

2.5 Predicate-Argument Structure Analysis

,wy), the goal of syntactic analysis is to output a de- After the three disambiguation procedures described alibeein-

put sentence is transformed into a dependency tree whees rzod
words and some subtrees are annotated with an NE tag. Thexwe e
ecute the following steps from the beginning of the text te ¢émd

to extract tuples of a predicate and its arguments, calledigate-
argument structure, fromit.

1. Find the next NE tagged withc or Af.

#7C/Ac (boil)

2. Setthat NE as the predicate with unknown arguments.

HTC(??, 27, ...)

3. Enumerate all the NE sequences depending on the prediigate

referring to the dependency tree. Note that many of themare ¢
nected indirectly to the predicate with a case marker whscipk
parent from the POS in Japanese.

[7KIF (water) /4 0 O ¢ c/Q % (obj., case marker)
1%3/T (pot) T (by, case marker)

4. Construct a predicate-argument structure using theqatedand

these sequences. Note that we add a case marker for each argu-
ment tagged with- (food) or T (tool) to clarify the semantic role
(subject, object, etc.) of the NE in regards to the predicate



Table2. Fully annotated corpora.

corpus name | #sentenceg #words | #characters| #NEs | #dependencies
BCCWJ 53,899 | 1,275,135| 1,834,784 - -
recipe 242 4,704 7,023 | 1,523 -
Dict. sentences 11,700 | 147,809 197,941 - 136,109
Newspaper art, 9,023 263,425 398,569 - 254,402
recipe 724 13,150 19,966 | 3,797 12,426
B C (0bjik-4 0 0-c c, T:f) &/ C (Freq=1497)
boil(obj..water 400cc, by:pot) oK Tl E--T. L (L1 o F > W A
. L A Z|BE-T-T). (1) o LWz g, - -
The procedure described above does not cover some linguisti W 1C B & M_x| BT B

phenomena such as zero-anaphora, causative form, retédivee,

etc. These phenomena require some additional disamlogubé-

cause they span more than one sentences. The text processing
ponent could output possible candidates with probabibtytsit the

work flow construction component can execute disambignatgan

optimization problem. We leave this part as future work.

3 Evaluation

We developed a recipe text analysis system based on theviae
we explained in Section 2 In this section, we present expniai
results on real recipe texts and evaluate our framework.

3.1 Experimental Settings

There are various language resources available in theajettenain.
But are not suitable for recipe text analysis because of doditier-
ences. But they can be used for parameter estimation ofibaddlP
systems. For the word segmentation step we use the Balarmed C
pus of Contemporary Written Japanese (BCCWJ) [8] whichaiast
sentences annotated with word boundary information andisvan-
notated with POS tags. We also used a dictionary UniDic {@ers
1.3.12)6 and the list of arabic numbers, first names, family names
and signs. The total number of entries is 423,489 words.Heosyn-
tactic analysis step we use sentences extracted from articyi [7]

andNikkeinewspaper articlésThese sentences are annotated with

word boundary information and the dependency structures E
be recognized are highly domain dependent. NEs in the dethera
main such as names of people, names of organizations, aes, dat
etc. are not useful in recipe text processing. But we need $yigs
cific to the recipe domain as enumerated in Subsection 2.3veSo
prepared a small recipe corpus annotated with these NE& Pab
shows the specifications of these fully annotated corpuadtfition
we prepared a partially annotated corpus in the recipe dorieai
each procedure. The details are described in each subsettie
test data is randomly selected 100 recipes taken from COQKRA
all the evaluations.

3.2 Word Segmentation

The first step is word segmentation. The baseline systeme&yT
[13], is based on a linear SVM [4], which decides if there is@dv

6 Available atht t p: / / www. t okut ei cor pus. j p/ di st/ (accessed in
June, 2012).

Thttp://e.nikkei.conl (accessed in June, 2012)

8 Available at http://wwv. phontron. conf kytea/ (accessed in
June, 2012).

Figure 3. Partial annotation for word segmenter adaptation. An atapt
checks if a string #17 C” (boil) is a word in the context. The meaning of
the symbols between characters are explained in Subsé&cflon
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Figure4. Learning curve of word segmentation.

boundary or not at each point. The parameters are estimaiediie
BCCWJ, the dictionary sentences, and newspaper articles.

For the domain adaptation, we first extracted unknown word ca
didates from a large raw recipe text by the distributionahlygn
sis [10]. Then we showed an annotator three occurrencesafdr e
unknown word candidate with its contexts in keyword in cahte
(KWIC) style shown in Figure 3. Then the annotator checkeldge
strings are a word in that context and changed the word baoynda
information if necessary. The total work time was eight Isoie
measured the word segmentation accuracy after each hour.

As an evaluation measure, we use word F-measure followitig [1
Roughly speaking, the F-measure represents the ratio obtinectly
recognized words over all the words.

Figure 4 shows the learning curve of word segmentation. The a
curacy of the baseline is lower than the accuracy in the géer
main (98.13%) reported in [13]. With adding a partially atated
corpus by checking the unknown word candidates, the acgimac
creases gradually. From the curve, it can be said that theamchas
not been saturated and more annotation work contributefutareer
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Figure5. Learning curve of named entity recognition.

improvement.

3.3 Named Entity Recognition

The next step is named entity recognition. The baselineesyéirst
enumerates all possible tags for each word with their priibab
using logistic regression. The parameters are estimabed /10 of
the recipe in Table 2 corpus whose words are annotated wittad=
Then our NE recognizer searches for the best tag sequence.

For the domain adaptation, we simply increased the traidatg
size from 1/10 to 10/10. The total annotation time was abwat fi
hours. We measured the named entity recognition accuracéo
training size of 1/10, 2/10, ..., 10/10.

The evaluation measurement is F-measure, the harmonic ofiean

the precision and the recall [2]. The precision is the rafithe NEs
correctly recognized by the system over all the recognizéd ahd
the recall is the ratio of the correctly recognized over lzd NEs in
the test corpus.

Figure 5 shows the learning curve of named entity recognitio
The accuracy of the baseline, the left most point in the gréph
very low compared with the F-measure of 80.17 reported iffldis
named entity recognition in the general domain. The reasahait
the training data size of the baseline is much smaller thg@0D2
sentences used in [15]. By adding annotated sentences;dhmay
increases steadily. But it is still lower than the F-measfi@0.17 re-
ported in the general domain. This shows that we need manénga
data.

3.4 Syntactic Analysis

The last disambiguation is syntactic analysis. The pa&RA® [5],
requires words annotated with POS tags. But the trainingusoand
the test corpus (see Table 2) are not annotated with POSsiagse

Then we built the baseline parser from the dictionary ser@emnd
newspaper articles.

9 Available at http://ww. ar. medi a. kyot o- u. ac. j p/
menber s/ fl annery/ eda/i ndex.en. ht Ml (accessed in June,
2012).

1. (& TC,0bj.K-4 00-cc )
used a Japanese POS tagger, KyTea [13], trained on the BCCWR. { &7 C, T )
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Figure6. Learning curve of syntactic analysis.

For the domain adaptation, first we constructed a dictiooany
taining all the sequences of a noun and a postposition apgear
the training corpus. Then we searched for new noun-postposie-
guences in the raw recipe text from the beginning and shoivem t
to an annotator. Then he/she annotated them with the depende
destination (normally the verb). The total work time was &8itsoWe
measured the syntactic analysis accuracy after each hour.

The evaluation measurement is the accuracy defined as ithefrat
words with the correct dependency destination over all thiela: We
discarded the last word in the sentences because in wraanése
it is always the sentence head.

Figure 6 shows the learning curve of syntactic analysis.aduel-
racy of the baseline, the left most point in the graph, is lothan
the accuracy 96.83%reported in [5]. The reason is the difference
in domain between the training data and the test data. Byngdali
partially annotated corpus prepared by checking new segsenf a
noun and a postposition appearing in the raw recipe textatica-
racy increased gradually. From the curve, it can be saidvikatan
expect further improvements just by continuing the anmmtawork.

3.5 Overall System

Finally we measured the accuracy of the overall system befad
after all the adaptations. In this experiment the input ig@tence.
The sentence is automatically segmented into words, nantégs
are automatically extracted, and the sentence is convattexmnati-
cally into a dependency tree.

Similar to named entity recognition the evaluation measuréhe
overall system is F-measure. The only difference lies irdéfenition
of the units to be recognized. Here they are the predicatenaent
pairs. For example, the predicate-argument structure ishiovthe
end of Section 2 has two following pairs:

(boil, obj.:water 400cg
(boil, by:pot)

A pair is correct if and only if the predicate and its argumard the
same including the case markers.

10 The parser was trained on the dictionary sentences and t@steifferent
sentences in the same domain



The F-measure of the cascade combination of the baselitensys  [8]
was 42.01. After the adaptations of all the procedures, theeksure
increased to be 58.27. The baseline accuracy is low butth&edap- 9]

tations the performance improved drastically by 28.0%restioni-
nation. The accuracy after the adaptations, still, may aatifficient
for the succeeding work flow construction process. The totak
time for corpus annotation is only 8+5+8 = 21 hours. We cailyeas (10]
double or triple the work time to have a further improvement.

The framework of all the procedures we propose in this paper r
quires only annotations to words or expressions specifitdmecipe
domain and allows us to improve the overall system perfooman
very easily. From the comparison among the learning curfedl o
the procedures (Figure 4, 5, 6), it may be a good strategyeiodspur
annotation work more on NE, since the baseline accuracy meda
entity extraction is much lower than the other procedures the
accuracy gain realized by the adaptation is much larger.

[11]

[12]

[13]

4 Conclusion [14]

In this paper, we presented a machine learning approachcipere
text processing aiming at converting a recipe text to a warnk.flWe
focused on NLPs and describe the procedures to extractcptedi
argument structures from a sentence in a recipe text. Invhle®
tion, we reported the accuracies of each NLPs and the effabeo
adaptation to the recipe domain as well as the accuracy drities
system. The design we describe in this paper is general bovdsals
to develop a text processing system in a certain domain wgokly
with low cost.

For recipe work flow construction, the problems of some liatici
phenomena and the connection of predicate-argument steschre
still remains. We will give a solution to these problems wifte same
design philosophy.

[15]

[16]
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