
Springer Nature 2021 LATEX template

State-aware Video Procedural Captioning

Taichi Nishimura1*, Atsushi Hashimoto2, Yoshitaka
Ushiku2, Hirotaka Kameko3 and Shinsuke Mori3

1*Graduate School of Informatics, Kyoto University,
Yoshidahonmachi, Kyoto-shi, 606–8501, Kyoto, Japan.

2OMRON SINIC X Corporation, 5–24–5, Bunkyo-ku, 113–8656,
Tokyo, Japan.

3Academic Center for Computing and Media Studies, Kyoto
University, Yoshidahonmachi, Kyoto-shi, 606–8501, Kyoto, Japan.

*Corresponding author(s). E-mail(s): taichitary@gmail.com;
Contributing authors: atsushi.hashimoto@sinicx.com;
yoshitaka.ushiku@sinicx.com; kameko@i.kyoto-u.ac.jp;

forest@i.kyoto-u.ac.jp;

Abstract

Video procedural captioning (VPC), which generates procedural text
from instructional videos, is an essential task for scene understanding
and real-world applications. The main challenge of VPC is to describe
how to manipulate materials accurately. This paper focuses on this chal-
lenge by designing a new VPC task, generating a procedural text from
the clip sequence of an instructional video and material set. In this
task, the state of materials is sequentially changed by manipulations,
yielding their state-aware visual representations (e.g., eggs are trans-
formed into cracked, stirred, then fried forms). The essential difficulty
is to convert such visual representations into textual representations;
that is, a model should track the material states after manipulations to
better associate the cross-modal relations. To achieve this, we propose
a novel VPC method, which modifies an existing textual simulator for
tracking material states as a visual simulator and incorporates it into
a video captioning model. Our experimental results show the effective-
ness of the proposed method, which outperforms state-of-the-art video
captioning models. We further analyze the learned embedding of mate-
rials to demonstrate that the simulators capture their state transition.

Keywords: Instructional video, Procedural text, Simulator

1

Springer Nature 2021 LATEX template

2 State-aware Video Procedural Captioning

1 Introduction

In recent years, there has been significant progress in vision and language
research that targets procedural text and instructional video [1–5]. Among
the various tasks in such research, it is important to describe the content of
the video using natural language for both scene understanding and real-world
applications. For example, machines can help people learn new skills by pro-
viding a quick overview of instructional videos. To this end, video procedural
captioning [6, 7] (VPC), which is the task of generating procedural text from
instructional videos, has been proposed. VPC requires a model (1) to segment
important clips from a video, (2) enumerate materials used in the clips, and
(3) describe how to manipulate them as a sentence for each clip. (1) and (2)
have been independently studied as the task of temporal clip segmentation
[1, 8] and object recognition [9, 10], respectively. In this paper, we focus on (3)
by designing a new VPC task and the method of generating a procedural text
from a clip sequence pre-segmented in an instructional video and material set
(Fig. 1).

Different from standard video captioning [11–15], our task requires a model
to describe detailed material manipulations from visual observations. The
manipulations change the state of materials sequentially, yielding their state-
aware visual representations (e.g., in step 2 in Fig. 1, “eggs” are transformed
into “cracked” then “stirred”). The essential difficulty is to convert such visual
representations into textual representations; that is, a model should track
material states after manipulations to generate a procedural text. For exam-
ple, when generating step 3 in Fig. 1, the models should be aware that the
yellow liquid in the bowl and white liquid in the pan correspond to the eggs
and butter manipulated in steps 1 and 2, respectively. Existing video caption-
ing models cannot track material states; thus, they miss materials, hallucinate
them (e.g., materials that are not in the clip), and lack details (e.g., say “cook
ingredients”), thereby degrading the captioning performance. The above chal-
lenge is not specific to the cooking domain but is universal across multiple
domains, such as wet-lab experiments and furniture assembly.

To address this challenge, this paper aims to generate procedural texts by
modeling the state transition of materials from visual observations. The same
motivation, tracking materials against their state transition, is shared by the
research community in natural language understanding (NLU). To address
this, some NLU studies have proposed a simulator to reason the state transition
of materials in a procedural text [16, 17]. These simulators read one sentence
in a procedural text, predict executed actions and involved materials, and
recurrently update the state of the materials to simulate their state transition.

Inspired by these ideas, we propose a novel VPC method, which modi-
fies an existing NLU simulator as a visual simulator and incorporates it into
an encoder-decoder architecture. Fig. 1 illustrates the idea of the proposed
method. Given a clip sequence and material set, the proposed method reasons
the state transition of materials and generates procedural text accurately. We
emphasize that this work is the first attempt to integrate the NLU simulator

Springer Nature 2021 LATEX template

State-aware Video Procedural Captioning 3

into a video captioning model. In addition, based on the intuition that the
state transition of materials is consistently traceable from the generated pro-
cedural texts, we attach a novel textual re-simulator, facilitating the model to
generate a procedural text even more accurately.

In our experiments, we test the proposed method in the cooking domain
because of its large variety of actions and materials (= ingredients). We com-
pare it with two state-of-the-art video captioning models on four evaluations:
word-overlap evaluation, ingredient prediction, retrieval evaluation, and qual-
itative analysis, with thorough ablation. Our experimental results show that
the proposed method outperforms the state-of-the-art video captioning mod-
els. In addition, ablation studies show the effectiveness of integrating visual
and textual simulators into the model. Finally, we analyze the learned embed-
ding of materials to demonstrate that the simulators effectively capture the
state transition of materials.

Key contributions and extensions from our previous work. The
preliminary version of our work has been published at ACM Multimedia 2021
[18]. The key contribution of [18] is (1) modifying an existing NLU simulator as
a visual simulator and incorporating it into an encoder-decoder architecture,
and (2) incorporating textual re-simulator to facilitate the model to generate
a procedural text more accurately. Furthermore, this work provides a detailed
explanation of the proposed method and additional experiments as following:

• Modification of the material encoder for learning material set of permutation
invariant representations of materials. Although the previous work regarded
input materials as an ordered set, it is more reasonable to generate identical
sentences against changes in the order of materials.

Material

set eggsbutter

Clip sequence

cheese

step 3

step 2

step 1 added

cracked

stirred

added

stirred

action(s) : state

State transition

add the

butter into a pan

crack the

eggs and stir

add the egg mixture

and cheese and stir

Procedural text

Fig. 1 Concept of the proposed method. Given a clip sequence and material list, the pro-
posed method generates a procedural text by reasoning the state transition of materials at
each step.

Springer Nature 2021 LATEX template

4 State-aware Video Procedural Captioning

Table 1 A comparison of video captioning approaches. Our work is the first attempt to
generate a procedural text more accurately than other general video captioning methods
without using transcription.

Method Input Domain Base model
MFT [14] Video General LSTM
AdvInf [19] Video General LSTM

Masked Transformer [20] Video General Transformer
Transformer-XL [13] Video General Transformer

MART [13] Video General Transformer
DPC [6] Video + Transcription Procedural LSTM
TVPC [7] Video + Transcription Procedural Transformer

Ours Video + Materials Procedural Transformer

• Increase of the dataset size by annotating new examples. We added 126
newly annotated recipes to our previous study.

• Additional quantitative and qualitative evaluations, such as sentence-level
word-overlap evaluation and additional examples of generated recipes.

• Quantitative evaluation of the visual simulators to investigate how accu-
rately they can acquire the state-awareness of materials.

• Additional experiments on the full prediction setting, where the material
set is not given but is predicted from the video clips in advance. These
experiments provide insight into whether the proposed methods work well
with the predicted ingredients.

2 Related Work

We describe the novelty of the proposed method in line with other works
on video captioning in Section 2.1. In Section 2.2, we discuss simulators for
procedural text understanding because they are the main components of the
proposed method.

2.1 Video captioning

Video captioning is an attractive field for both computer vision and natural
language processing communities. Table 1 shows a comparison of recent video
captioning approaches. The task settings of video captioning vary according
to the nature of the input video (e.g., one short clip, clip sequence, or long
untrimmed video). Our VPC task targets a clip sequence and thus belongs to
the video paragraph description [13, 14, 19], which aims to generate multiple
sentences for a given clip sequence pre-segmented in the video.

In the video paragraph description, recently, Transformer-based [21] mod-
els have been featured because of their ability to capture long-term information
in a clip sequence, compared with LSTM-based models [14, 19]. MART [13] is
a transformer-based models that achieves state-of-the-art performance in the
video paragraph description. The key contribution of MART is the introduc-
tion of a gated recurrent memory module, which makes it easy for the model
to summarize important information in the previous step.

Springer Nature 2021 LATEX template

State-aware Video Procedural Captioning 5

Table 2 A comparison of methods for procedural text understanding. This work is the
first attempt to apply a reasoning-based simulator to the video captioning task.

Method Type Modality Task
Action graph [22] Graph-based parser Text Parsing

Recipe flow graph [23] Graph-based parser Text Parsing
SIMMR [24] Graph-based parser Text Parsing
MM-ReS [25] Graph-based parser Image+Text Parsing
vSIMMR [26] Graph-based parser Image+Text Parsing
NPN [16] Reasoning-based simulator Text Text generation
RPN [17] Reasoning-based simulator Image+Text QA

Ours Reasoning-based simulator Video+Text Video captioning

Different from standard video captioning, VPC requires a model to generate
detailed material manipulations for input clips. To this end, previous VPC
works [6, 7] target narrated videos and utilize transcription as a cue to generate
a procedural text by fusing video and transcription features. Although these
approaches work well for narrated videos, transcription is not always available
for all instructional videos. Speaking during manipulations or adding narration
to videos requires significant effort. Thus, the proposed VPC task extends the
previous VPC works to describe manipulations even from non-narrated videos;
our task allows a model to refer to a human-created material set1. Our task
requires a model to track material states that are changed by manipulations
to generate a procedural text accurately. To this end, we propose a novel
VPC method, which modifies an NLU simulator as a visual simulator and
incorporates it into a transformer-based encoder-decoder.

2.2 Procedural text understanding

In NLU, procedural texts are a popular target for understanding, and recipes
have been featured in this field. Many researchers have proposed methods to
understand recipes, which are roughly divided into two categories: (1) a graph-
based parser and (2) a reasoning-based simulator. Table 2 shows a comparison
of these approaches.

A graph-based parser aims to train a model to map recipes into graph
or tree structures. Kiddon et al. [22] and Maeta et al. [23] proposed a model
to estimate a graph structure called the action graph and recipe flow graph,
respectively. Jermsurawong and Nizar [24] proposed a parser with the SIMMR
dataset, which provides a tree structure for understanding ingredient merg-
ing operations. Then, Pan et al. [25] and Nishimura et al. [26] provided
new multimodal tree structure datasets and parsers, which can be regarded
as an extension of the text-only version to a vision-and-language version.
These parsers focus on enabling machines to interpret recipes as structural
representations, rather than capturing the state transition of ingredients in
recipes.

A reasoning-based simulator aims to model the state transition of ingre-
dients in recipes by updating the ingredient states at each step. Gupta and

1We perform an experiments on the full prediction setting in Section 4.7.

Springer Nature 2021 LATEX template

6 State-aware Video Procedural Captioning

Materials

eggs

Clip sequence

1

2

3

butter

Encoder (sec 3.2) �E

step 1

step 2

step 3

Material vectors

Clip vectors

Decoder (sec 3.4) �D

Training
and inference

Training
only
Loss

calculation

Generated

Visual simulator (sec 3.3) �Rv

Clip
sequence
encoder

Material
encoder

Decoder Textual
encoder

Textual re-simulator (sec 3.5) �Rt

step 1

cheese

e01

e02

e03

Sentence vectors

h1

h2

h3

State-aware
step vectors

u1

u2

u3

step 2 crack…

step 3

add…

add…

step 1

step 2 crack…
stir…

step 3

add…

add…

Ground truth

step 1

step 2

step 3

s1

s2

s3

step 1

step 2

step 3

added

cracked
stirred

added
stirred

added

cracked
stirred

added
stirred

Action
label

Material
label

Construct
distant supervision

un ⊂

Fig. 2 An overview of the proposed method. To track material states in a clip sequence, we
incorporate the visual simulator Rv into the transformer-based encoder-decoder architecture
(E and D). In addition, based on our intuition that the state transition of materials is
traceable from the generated procedural texts, we attach the textual re-simulator Rt to the
model.

Simulator

-th clip vectorn

Clip vector

State-aware

step vector

hn

Recurrent

attention

(2) Material selector
an

(3) Updater
Updated material vectors

∑

Action embedding

MLP

wp

(1) Action selector

Bilinear

Clip

attention

∑

Action vector
Material vector

Training

and inference

Loss

calculation

0
1
0
1

1
1
1Input vectors

-th material

vector

(n − 1)

en−13

Next step

Next step

Forward

to next step

en−12

en−11

Update

gate

crack

add

boil

stir

fcrack

fadd

fstir

fboil

f̄n

Selected

action

vector

en−13

en−12

en−11
ēn

Selected

material

vector

ln
Action-aware

proposal

vector

̂e1

f̄n

hn

ēn

Action

label

Material

label

Material

selection loss

Action

selection loss

̂e2

̂e3

un ∈ ℝ3×d

×

×
×

×

×
×
×

Fig. 3 An overview of the (visual) simulator. The simulator recurrently reasons the state
transition of the materials at each step. Specifically, it predicts executed actions and involved
materials in (1) the action and (2) material selector and then updates the state of materials
in (3) the updater. The updated materials are forwarded to the next step. The textual re-
simulator has the same modules.

Durrett [27] proposed a structured simulator that imposes constraints on the
state transition of ingredients (e.g., stir-fried potatoes are not cut in later
steps). Amac et al. [17] proposed a method to answer multi-modal question
answering (QA) tasks by reasoning the state transition of ingredients using
a relation reasoning network [28]. This paper builds upon the neural process
network (NPN) [16], which learns to estimate the state transition of ingre-
dients by predicting executed actions and involved ingredients. Owing to the
ability to capture the state transition of ingredients, these simulators reported
competitive results in QA tasks [17, 29]. Our work adopts a reasoning-based
simulator. We modify an NPN as the visual simulator and incorporate it into
the transformer-based encoder-decoder architecture to enable the model to
capture the state transition of ingredients.

3 Proposed Method

In this section, we present the proposed method. After describing an overview
in Section 3.1, we explain the components of the proposed method from Section

Springer Nature 2021 LATEX template

State-aware Video Procedural Captioning 7

eggs

Clip sequence encoder

butter

cheese
[CLS]

[CLS]

[CLS]

1st Transformer

2nd

 Transformer

1st Transformer

1st Transformer

h1

h2

h3

e01

e02

e03

Material encoder

GloVe

(freeze) mean MLP

+ ReLU

GloVe

(freeze) mean MLP

+ ReLU

GloVe

(freeze) mean MLP

+ ReLU

 Parameter

shared

 Parameter

shared

Fig. 4 An overview of the material and clip sequence encoders.

3.2 to Section 3.5. Finally, in Section 3.6 we explain the loss functions to train
the model.

3.1 Overview

Fig. 2 shows an overview of the proposed method. Given a clip sequence
V = (v1, . . . ,vn, . . . ,vN) and a material set G = (g1, . . . , gm, . . . , gM), our
goal is to output a procedural text Y = (y1, . . . ,yn, . . . ,yN) by recurrently
generating sentences from corresponding clips. To generate a procedural text
accurately, it is essential for models to track material states in the clip sequence
(e.g., eggs are transformed into cracked, stirred, then fried forms).

Inspired by recent advances in NLU, we achieve this by modifying the
existing reasoning-based NLU simulator NPN as the visual simulator Rv, and
incorporate it into the transformer-based encoder-decoder architecture (E and
D). Specifically, given clip H and material encoded vectors E0, the visual
simulator reasons the state transition of materials and outputs state-aware
step vectors as U = Rv(H,E0). Then, the decoder D outputs a procedural
text conditioned on U . We observe that this simple integration of the visual
simulator is effective for the model to generate a procedural text accurately.

In addition, based on our assumption that the state transition of materi-
als should be consistently traceable from the generated procedural text, we
attach a novel textual re-simulator Rt, encouraging the model to generate a
procedural text even more accurately. Specifically, the textual re-simulator Rt

reasons the state transition of materials from the generated procedural text as
Rt(S,E0), where S represents the encoded sentence vectors. Note that the tex-
tual re-simulator is only used during the training phase and detached during
the inference phase.

Springer Nature 2021 LATEX template

8 State-aware Video Procedural Captioning

3.2 Encoder

The input has two components: a material set G and a clip sequence V . Thus,
we develop a suitable encoder for each component. Fig. 4 shows an overview
of the encoders.

Material encoder. To encode a material set, we input them to con-
catenated neural networks of pre-trained GloVe [30]2 word embedding and
multi-layer perceptrons (MLPs) with the ReLU activation function. Multi-
word materials (e.g., parmesan cheese) are represented by the average embed-
ding vector of words. Then, we obtain the initial material vectors E0 =
(e01, . . . , e

0
m, . . . , e0M). Compared with our previous work, the key difference is

the learning of permutation-invariant representations of materials instead of
the position-sensitive implementation in the previous work. Although the pre-
vious work regarded input materials as ordered sets, it is more reasonable to
generate identical sentences against changes in the order of materials.

Clip sequence encoder. A clip sequence V is hierarchical because the
clip sequence contains multiple clips, and each clip is composed of sequen-
tial frames. Thus, to encode a clip sequence effectively, we design a two-stage
transformer suitable to encode a sequence of sequences. First, the former
transformer encodes each clip into a feature vector by extracting the vec-
tor, which corresponds to the [CLS] token as in [13, 31, 32]. Then the latter
transformer is trained over the sequence to obtain the step-aware clip vectors
H = (h1, . . . ,hn, . . . ,hN) in the clip sequence.

3.3 Visual simulator

Based on the encoded vectors of the clip sequence and material set (H,E0),
the visual simulator, shown in Fig. 3, reasons the state transition of materials
at each step. Specifically, at the n-th step, given the n-th clip hn and (n−1)-th
material set En−1, the visual simulator predicts executed actions and involved
materials in (1) the action and (2) material selector and then updates the state
of materials in (3) the updater. After n-th reasoning, it outputs a state-aware
step vector un ∈ R3×d, which concatenates the n-th clip hn, selected action
f̄n and material vectors ēn (d represents the dimension of these vectors).
The visual simulator recurrently repeats the above process until processing
the end element of the clip sequence. This simulation process is the same as
NPN except for the input modality; we replace the textual sentence and entity
vectors for NLU with visual clip H and material vectors E0 for our task. Thus,
we only provide a high-level overview in this subsection, and further details of
the simulator are provided in Appendix A.

(1) Action selector. Given a clip vector hn, the action selector outputs
the selected action vector f̄n by choosing actions executed in the clip from the
predefined action embeddingF . For example, in Fig. 3, the actions “crack” and
“stir” are executed in the clip, thus both f crack and fstir should be selected.

2We employ pre-trained 300D word embedding, which can be downloaded from http://nlp.
stanford.edu/data/glove.6B.zip

http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip

Springer Nature 2021 LATEX template

State-aware Video Procedural Captioning 9

To consider multiple actions, the action selector computes a soft selection wp

as an action probability for each action in F . Then it outputs the selected
action vector f̄n as a weighted sum of the action embedding F and action
probability wp.

(2) Material selector. Based on the action probabilitywp and clip vector
hn, the material selector outputs a selected material vector ēn by choosing
materials that are involved in the clip from the material set En−1. For example,
in Fig. 3, the raw “cheese” and manipulated “eggs” and “butter” should be
selected. To consider such a combination of raw and manipulated material
selection, the material selector has two attention modules: (1) clip attention
and (2) recurrent attention. While the clip attention selects materials from
the current clip vector hn, the recurrent attention selects materials based on
both the current and previous clips. Using these modules, the material selector
computes a soft selection an as the material probability for each material in
the material set En−1. Then it outputs the selected material vector ēn as a
weighted sum of the material vectors En−1 and material probability an.

(3) Updater. Based on the selected actions and materials, the updater
represents the state transition of materials by computing a new material vec-
tor êm. To this end, it first calculates an action-aware proposal vector ln of
materials with a bilinear transformation of selected action and material vec-
tors (f̄n, ēn). Then, based on the material probability an, it computes the
new material vector êm by interpolating the action-aware proposal vector ln
and the current material vector en−1

m . The m-th new material vector êm is
assigned to En

m, which is forwarded to the next (n+ 1)-th step.

3.4 Decoder

Fig. 5 shows an overview of the decoder. The decoder D outputs a proce-
dural text by recurrently generating sentences from the n-th output vector
un of the visual simulator. As our decoder D, we use the transformer, which
achieves state-of-the-art performance in video captioning tasks [6, 7, 20]. Our
task allows the model to refer to a material set, thus to encourage the decoder
to generate materials, we incorporate the copy mechanism [33] into the decoder
D. When generating the k-th word in the n-th sentence, given the updated
materials enm ∈ En, the copy mechanism first calculates the attention proba-
bility βm

n,k using the bilinear dot product of the vectors of the decoder output
on,k and each material enm ∈ En as:

βm
n,k =

exp {(on,k)
TW ce

n
m}∑

i exp {(on,k)TW ceni }
, (1)

where W c represents a bilinear map.
Then it calculates the copying gate gn,k (0 ≤ gn,k ≤ 1), which makes a

soft choice between selecting a material from the material set and generating

Springer Nature 2021 LATEX template

10 State-aware Video Procedural Captioning

Add the … (shifted right)

Word embedding

Masked multi-head

attention

Positional

encoding

f̄n

hn

ēn

State-aware

step vector

x N

̂e1

̂e2

̂e3

Updated

material vectors

Feed forward

Multi-head

attention

Add & norm

Feed forward

Add & norm

+

Linear
Attention

Eq. (1)

Copying gate

Eq. (2)βm

n,k

on,k

gn,k Softmax

Pvoc
n,k (w)

Word probability

Eq. (3)

Copy

mechanism

eggs

Fig. 5 An overview of the decoder.

a word from the vocabulary:

gn,k = σ(W g[on,k;
∑
m

βm
n,ke

n
m] + bg), (2)

where [·], σ(·), W g, and bg represent the concatenation function, sigmoid func-
tion, linear map, and bias, respectively. Based on gn,k, the final predicted word
probability Pn,k(w) is computed as the weighted sum of the copy probability
and generation probability as follows:

Pn,k(w) = (1− gn,k)P
voc
n,k (w) + gn,k

 1

∥gm∥
∑

i:wi∈gm

βi
n,k

 , (3)

where P voc
n,k (w) and ∥gm∥ represent the probability of the n-th sentence’s k-th

word w in the vocabulary and the number of words of in the m-th material,
respectively3.

3To consider multiple words of materials, we divide the probability by the number of words.

Springer Nature 2021 LATEX template

State-aware Video Procedural Captioning 11

3.5 Textual re-simulator

Because the state transition of materials is identical in the visual and textual
worlds, it should be consistently traceable from the generated procedural texts.
Based on this assumption, we add a novel textual re-simulator Rt, encouraging
the model to generate a procedural text even more accurately.

The textual re-simulator consists of two sub-modules: (1) a textual encoder
and (2) a textual simulator. The textual encoder converts a generated pro-
cedural text into step-aware sentence vectors S = (s1, . . . , sn, . . . , sN). First,
it applies the straight-through version of Gumbel softmax resampling [34] to
sample a procedural text, preserving the differentiable chain. The sampled pro-
cedural text is further converted into feature vectors by computing the average
vector of the word embedding at each step. Note that the word embedding is
shared between the decoder and textual encoder. They are then converted into
step-aware sentence vectors S using a biLSTM encoder. Finally, based on S,
the textual simulator, another NPN described in Section 3.3, reasons the state
transition of materials again as Rt(S,E0).

3.6 Loss functions

To train the model, we compute three types of losses: (1) sentence generation
loss Lsent, (2) visual simulation loss Lv sim, and (3) textual re-simulation loss
Lt sim.

(1) Sentence generation loss Lsent. This loss aims to train the decoder,
and is computed as the summed negative log-likelihood for all input/output
pairs {(V,G),Y} in the training set.

(2) Visual simulation loss Lv sim. This loss aims to train the visual
simulator, and consists of two losses: (1) material selection loss and (2) action
selection loss. These losses are computed as the summed binary cross-entropy
loss based on whether the materials/actions are involved/executed in the clip.
To avoid costly human annotations, we compute the loss from distant super-
vision [35] following the original NPN training method [16]. For the material
selection loss, labels are obtained whether or not each step contains materials
in the material set; for the action selection loss, labels are obtained whether or
not each step contains actions in the 384 actions defined by [16]. For example,
from the sentence “crack the eggs and stir,” “eggs” is extracted as a material
label, and “crack” and “stir” are extracted as an action label. As the action
selection loss, the simple binary cross-entropy does not work in our preliminary
experiment because the ratio of positive to negative actions is imbalanced; a
few actions are positive and most of the actions are negative. Thus, as the
action selection loss, we use asymmetric loss [36], which is a weighted binary
cross-entropy loss, to defuse the imbalanced problem.

(3) Textual re-simulation loss Lt sim. To train the textual re-simulator,
we also compute the above visual simulation loss from the sampled procedural
texts.

Springer Nature 2021 LATEX template

12 State-aware Video Procedural Captioning

Table 3 YouCook2-ingredient+ dataset statistics.

train val test
#recipes 1,331 228 229
#steps / #recipes 7.8 7.6 7.7
#ingredients / #recipes 10.4 10.3 10.4

Total loss. Consequently, to train the entire model in an end-to-end
manner, the total loss is computed as

Ltotal = Lsent + Lv sim + λLt sim, (4)

where λ is a hyper-parameter used for weighting the importance of the textual
re-simulation loss.

4 Experiments

We test the proposed method in the cooking domain because procedural texts
(= recipes) have a large variety of actions and materials (= ingredients). We
compare it with two state-of-the-art video captioning models on four evalu-
ations: word-overlap evaluation (Section 4.2), ingredient prediction (Section
4.3), retrieval evaluation (Section 4.4), and qualitative analysis (Section 4.5)
with thorough ablation. We also visualize the learned embedding of ingre-
dients, demonstrating that the visual simulator effectively reasons the state
transition of ingredients (Section 4.6).

4.1 Experimental settings

Dataset. We use the YouCook2 dataset [1], which consists of 2,000 cooking
videos from 89 recipe categories. All of the videos have 3–16 clips with a
start/end timestamp annotated by humans, and each clip is also annotated
with an English sentence. Because ingredients are not annotated in the original
dataset, in our previous work, we prepared the YouCook2-ingredient dataset
by annotating ingredients for recipes with 1,662 valid videos that are available
online. This work increases the dataset size by obtaining the missing videos
through YouCook2 author and annotating ingredients with these additional
videos. As a result, we obtained the annotated 1,788 videos as the YouCook2-
ingredient+ dataset and divided them as follows: 1,331 for training, 228 for
validation, and 229 for testing4. Table 3 shows the statistics of the YouCook2-
ingredient+ dataset.

Data preprocessing. As clip features, we use concatenated features of
appearance and optical flow provided by [1]. With respect to the appearance,
2,048D feature vectors extracted from the “Flatten-673” layer in ResNet-200
[37] are used, and for the optical flow, 1,024D feature vectors extracted from
the “global pool” layer in BN-Inception [38] are used. As in [13], we truncated
sequences longer than 100 for the clip and 20 for the sentence and set the

4We will release annotated ingredients and the dataset split.

Springer Nature 2021 LATEX template

State-aware Video Procedural Captioning 13

maximum length of the clip sequence to 12. Finally, we built the vocabulary
based on words that occurred three times or more, and the resulting vocabulary
contained 991 words.

Hyper-parameter settings. For both the encoder and decoder trans-
formers, we set the hidden size to 768, the number of layers to two, and the
number of attention heads to 12. We train the model following the optimization
method described in [13, 31]; we use the Adam optimizer [39] with an initial
learning rate of 0.0001, β1 = 0.9, and β2 = 0.999. The L2 weight decay is set
to 0.01, and the learning rate warmup is over the first five epochs. We set the
batch size to 16, and continue training at most 50 epochs using early stopping
with CIDEr-D. We tune λ with four different values λ ∈ {0.25, 0.5, 0.75, 1.0}
and set λ to 0.5 in our experiments (for details, see Section 4.2).

Models. We test the proposed method by comparing it with two state-of-
the-art video captioning models, as described below.

• Transformer-XL [40] is a powerful transformer-based language model that
was originally proposed for capturing long-term dependency in natural lan-
guage. As in [13], we adapt it for our task; the model directly uses all of the
previous hidden states to generate a current sentence.

• MART [13] is a transformer-based video captioning model that achieves
state-of-the-art performance on the video paragraph description. This model
generates a sentence with a gated recurrent memory module, which does not
pass all of the previous hidden states, but effectively summarize important
information in the previous step.

Note that these models originally have no ingredient set in the inputs and
copy mechanism in the decoder. Thus for a fair comparison, we prepare for
additional baselines, baseline + ingredient (-I) models, which incorporate the
material encoder (Section 3.2) and the copy mechanism into the models (for
implementation details of the models, see Appendix C).

Ablations. To reveal the impact of the components in the proposed
method, we conduct ablation studies on the following variations.

• Video only (V) encodes a clip sequence with the clip sequence encoder,
then generates a procedural text.

• V + Ingredient (VI) incorporates the material encoder and copy
mechanism in the model.

• VI + Visual simulator (VIV) incorporates the visual simulator into the
VI model.

• VIV + Textual re-simulator (VIVT) additionally incorporates the
textual re-simulator into the VIV model.

4.2 Word-overlap evaluation

Scores. To evaluate the captioning performance of the proposed method, we
compute commonly used word-overlap metrics, such as BLEU [41], ROUGE-
L [42], METEOR [43], and CIDEr-D [44] in the test set. We conduct two

Springer Nature 2021 LATEX template

14 State-aware Video Procedural Captioning

Table 4 Paragraph- and sentence-level word-overlap evaluation for the baseline and the
proposed models with ablation studies. The scores in bold are the best among the
comparative models. “I” indicates whether the model uses ingredient information or not.
B=BLEU, M=METEOR, C=CIDEr-D, RL=ROUGE-L.

Paragraph-level Sentence-level
Baseline I B1 B2 B3 B4 M C RL B1 B2 B3 B4 M C RL
Transformer-XL 39.0 22.0 12.1 6.7 15.2 22.7 30.9 26.5 13.5 5.3 1.5 10.6 57.3 27.8
+ Ingredients (Transformer-XL-I) ✓ 37.7 22.5 13.4 8.2 15.4 35.4 34.2 29.6 17.0 8.2 3.5 12.6 69.6 31.3
MART 37.9 21.7 12.4 7.6 15.0 29.1 32.3 28.0 14.5 6.1 2.4 11.1 62.1 29.4
+ Ingredients (MART-I) ✓ 42.3 26.2 16.1 9.9 17.6 48.2 36.2 31.3 18.5 9.4 4.4 13.7 81.0 32.9
Ours
Video only (V) 43.2 24.5 14.0 8.1 16.6 32.4 31.9 28.0 13.9 6.0 1.9 11.4 60.7 28.3
V + Ingredients (VI) ✓ 49.1 29.5 17.6 10.5 20.3 63.3 35.2 31.9 18.0 9.3 3.8 13.9 81.7 31.3
VI + Visual simulator (VIV) ✓ 49.4 30.1 18.0 11.0 21.0 66.1 36.8 33.7 19.3 9.7 4.4 15.2 93.0 33.3
VIV + Textual re-simulator (VIVT) ✓ 49.4 30.9 18.3 11.3 21.1 67.1 37.1 33.5 19.4 10.1 4.9 15.2 96.7 33.7

Table 5 Change in paragraph-level word-overlap evaluation with controlled λ.

B1 B2 B3 B4 M C RL
λ = 0 (VIV) 49.4 30.1 18.0 11.0 21.0 66.1 36.8
λ = 0.25 49.6 30.4 18.3 11.3 21.1 65.5 36.6
λ = 0.5 49.4 30.9 18.3 11.3 21.1 67.1 37.1
λ = 0.75 50.3 30.4 18.0 10.8 21.2 65.7 36.3
λ = 1.0 49.1 30.0 18.0 11.0 21.0 64.4 36.7

types of word-overlap evaluation: recipe (paragraph-level) [13, 14, 19] and step
(sentence)-level evaluation [7].

Results. Table 4 shows the results of the word-overlap evaluation. We
observe that the proposed method consistently outperforms the state-of-the-art
captioning models by a significant margin in both paragraph- and sentence-
level evaluation. Our ablation studies show that the VIV model performs better
than the VI model, and the VIVT model further improves the VIV model.
This indicates that both the visual simulator and the textual re-simulator are
effective for generating a recipe accurately.

Performance change of controlling the hyper-parameter λ. Table 5
shows the results by varying the λ ∈ {0.0, 0.25, 0.5, 0.75, 1.0}. Note that λ = 0
is equivalent to the VIV model, which does not have a textual re-simulator.
The results indicate that (1) the VIVT model achieves a performance that
is better or comparable to the VIV model for any λ values, and (2) λ = 0.5
performs the best among the three metrics (BLEU2-4, ROUGE-L, and CIDEr-
D) and obtains competitive results in BLEU1 and METEOR. Thus, we set
λ = 0.5 in our experiments.

4.3 Ingredient prediction

To evaluate whether the models use correct ingredients at each step without
missing and hallucinating them, we design the ingredient prediction, which
measures the step-level overlap of ingredients between generated and ground-
truth recipes. To this end, we first construct an ingredient dictionary from all
unique ingredients in the YouCook2-ingredient+ dataset. Then, at each step,
we extract ingredients that are exact-matched between generated recipes and
the ingredient dictionary. The same process is performed to extract ingredients
in the ground-truth recipes. Finally, based on the extracted ingredient sets, we
compute the micro- recall, precision, and F1 scores, respectively.

Springer Nature 2021 LATEX template

State-aware Video Procedural Captioning 15

Ingredients flour, eggs, baking soda, salt, pepper, water, shrimp, batter, breadcrumbs, oil
step 1 step 2 step 3

Clip sequence

MART +
Ingredients

(MART-I)

add flour salt pepper to a bowl (✗ baking
soda, egg)

add flour salt pepper and milk to the bowl and
mix (✗ water)

add flour and shrimp in the bowl (✗ batter,
breadcrumbs)

V + Ingredients

(VI)

mix flour salt pepper and breadcrumbs (✗
baking soda, eggs)

mix flour salt pepper and breadcrumbs (✗
water)

coat the shrimp in the batter (✗ batter,
breadcrumbs)

VI + Visual
simulator (VIV)

mix flour baking soda salt pepper and
breadcrumbs (✗ eggs) mix the eggs with eggs (✗ water) coat the shrimp in the batter (✗ breadcrumbs)

+ VIV + Textual
re-simulator

(VIVT)

mix flour baking soda salt and pepper
together (✗ eggs) mix the eggs with the water coat the shrimp in the batter (✗ breadcrumbs)

Ground truth add flour eggs baking soda salt and pepper
to the bowl and stir add cold water to the bowl and stir cover the shrimp in the batter and

breadcrumbs

step 4 step 5

Clip sequence

MART + Ingredients

(MART-I) fry the shrimp in oil remove the shrimp from the oil

V + Ingredients

(VI) fry the shrimp in a pan with oil remove the shrimp from the oil

VI + Visual simulator

(VIV) heat oil in a pan and fry the shrimp remove the shrimp from the oil

VIV + Textual re-simulator
(VIVT) heat oil in a pan and fry the shrimp remove the shrimp from the oil

Ground truth place the shrimp into a pan of hot oil remove the shrimp from the pan

Ingredients soy sauce, brown sugar, water, garlic, green onions, sesame oil, ribs
step 1 step 2 step 3

Clip sequence

MART +
Ingredients

(MART-I)

add soy sauce sesame oil soy sauce sesame oil and
sesame oil to a pan

(✗ brown sugar, garlic, green onions, water)

cut the ribs into small pieces add soy sauce sesame oil soy sauce sesame oil
and sesame oil to a bowl (✗ marinade)

V + Ingredients

(VI)

add chopped garlic sesame oil brown sugar
and red pepper flakes to a pan and mix (✗
green onions, water)

put the marinade in the ribs and soy sauce add sesame oil garlic and the bowl (✗
marinade)

VI + Visual
simulator (VIV)

add garlic soy sauce sugar garlic green
onions and garlic to a bowl and mix

(✗ sesame oil, water)

cover the ribs with plastic wrap and place in a
paper towel pour the marinade over the ribs

+ VIV + Textual
re-simulator

(VIVT)

add garlic sesame oil sugar soy sauce garlic
and water to a blender

(✗ green onions)

place the ribs in a bag put the ribs into a bag (✗ marinade)

Ground truth combine soy sauce brown sugar water garlic
green onions and sesame oil place the ribs in the bag pour the marinade into the bag

step 4 step 5

Clip sequence

MART + Ingredients

(MART-I) cook the ribs in the pan cook the ribs on a grill

V + Ingredients

(VI) flip the pancakes over place the ribs on the grill

VI + Visual simulator

(VIV) flip the ribs over cook the ribs on a grill

VIV + Textual re-simulator
(VIVT) grill the ribs place the ribs on the grill and cook them until it is golden brow on

both sides

Ground truth oil the grate of the grill cook the ribs on the grill

(a)

(b)

Fig. 6 Examples of generated recipes. Here, we compare four models, MART-I (baseline),
VI, VIV, and VIVT with the ground truth. Green bold and red words represent semantically
correct and incorrect ingredients, respectively. Words in parentheses indicate missing ingre-
dients, which should be included in the sentence. Note that parallel words in a sentence are
not separated from the commas in the YouCook2 dataset (see step 1 in (a) in the ground
truth).

Springer Nature 2021 LATEX template

16 State-aware Video Procedural Captioning

Table 6 Results of ingredient prediction.

Baseline Recall Precision F1
Transformer-XL 12.6 19.1 15.2
+ Ingredients (Transformer-XL-I) 17.3 30.4 22.0
MART 11.3 20.2 14.5
+ Ingredients (MART-I) 21.9 34.0 26.7
Ours
Video only (V) 13.5 19.8 16.0
V + Ingredients (VI) 24.3 33.1 28.1
VI + Visual simulator (VIV) 28.9 43.2 34.7
VIV + Textual re-simulator (VIVT) 29.7 43.2 35.2

Table 7 Results of retrieval evaluation. ↓ indicates that lower is better.

Baseline MedR (↓) R@1 R@5 R@10
Transformer-XL 162.5 2.0 6.3 11.0
+ Ingredients (Transformer-XL-I) 139 1.6 8.1 13.6
MART 138.5 1.9 7.1 11.4
+ Ingredients (MART-I) 79 3.1 11.9 19.4
Ours
Video only (V) 134 2.2 8.4 13.6
V + Ingredients (VI) 65 4.6 14.5 21.2
VI + Visual simulator (VIV) 49 4.6 17.3 25.1
VIV + Textual re-simulator (VIVT) 49 5.2 17.3 25.2
Ground truth 7 19.0 45.2 59.7

Results. Table 6 shows the results of the ingredient prediction. This result
shows that the proposed method outperforms the state-of-the-art video cap-
tioning models. In our ablation, we observe the same tendency of performance
change to the word-overlap evaluation. We note that the VIV model performs
much better than the VI model by 6.6% in F1, indicating that not only the copy
mechanism but also the visual simulator are important for generating ingredi-
ents correctly. We also notice that the VIVT model improves the VIV model
by 0.5% in F1, demonstrating the effectiveness of the textual re-simulator.

4.4 Retrieval evaluation

To evaluate whether the generated procedural texts are sufficiently concrete
to describe the input clips, we design a step-level zero-shot sentence-to-clip
retrieval evaluation. As a retrieval model, we employ the MIL-NCE model
[5] pre-trained on the HowTo100M dataset [4], achieving the state-of-the-art
performance. In this task, given a generated step-level sentence as a query,
the MIL-NCE model embeds it and computes the cosine similarly as a score
between the query vector and all the 1,768 clip vectors from the test set. Then,
we sort scores with clips in descending order and calculate the median rank
(MedR) and recall rate at the top K (R@K). The median rank represents the
median ranking of retrieved corresponding clips, hence a lower is better; in
contrast, R@K represents the percentage of all the step-level sentence queries
where the corresponding clip is retrieved in the top K, hence a higher is better.

Results. Table 7 shows the results of the retrieval evaluation. We observe
that the proposed method significantly outperforms the state-of-the-art video
captioning models. In MedR, the VIVT model achieves 49, which is marginally

Springer Nature 2021 LATEX template

State-aware Video Procedural Captioning 17

Table 8 Quantitative evaluation of the visual simulators.

Ingredient Action
Recall Precision F1 Recall Precision F1

VIV 22.6 77.5 35.0 49.5 18.7 27.1
VIVT 21.4 75.9 33.4 49.1 19.9 28.3
Distant supervision 30.5 97.8 46.5 94.7 57.1 71.2

lower than that of Transformer-XL-I 139 and MART-I 79. This indicates that
the proposed method generates a more concrete recipe based on clips than
the state-of-the-art video captioning models. In our ablation, the VIV model
dramatically improves the VI model, indicating that the visual simulator is
essential for generating concrete recipes. In addition, the VIVT model shows
a steady improvement from the VIV model, indicating the effectiveness of the
textual re-simulator.

4.5 Qualitative analysis

Fig. 6 shows two examples of the generated recipes.
Insights. For the VPC task, it is important to generate the correct ingre-

dients that are manipulated in a clip. MART-I fails to generate ingredients
correctly; the model tends to miss and hallucinate ingredients (e.g., “flour”
and “milk” in step 2 (a) and “garlic” in step 1 (b)). A similar tendency can be
observed in the VI model, indicating that these models superfluously generate
ingredients listed in the ingredient set.

The VIV model suppresses these problems (e.g., “baking soda” and “bat-
ter” in steps 1 and 3 in (a) and “marinade” in step 3 in (b)). In addition,
owing to the textual re-simulator, the VIVT model can generate ingredients
that are missed or misrecognized in the VIV model (e.g., “water” in steps 1
and 2 in (a) and in step 1 in (b)).

Limitations. Although the proposed method generates recipes more accu-
rately than the baseline models, we still found some differences from the ground
truth. For example, in step 2 in (a), the VIV and VIVT models refer to “eggs,”
superfluously, but only “water” is added to the ground truth. In addition, in
step 3 in (b), the VIV and VIVT models generate “ribs” but it is not used.
To solve these problems, we believe that incorporating fine-grained ingredi-
ent recognition modules [45] would help the model to generate a recipe more
precisely.

4.6 Discussion of the learned embedding

4.6.1 Quantitative evaluation of visual simulators

We evaluate the visual simulators by measuring the performance of the action
and material selectors. These models are trained from distant supervision, as
described in Section 3.6, which does not always agree with human judgment.
Thus, we manually annotated the action and material labels for 50 recipes
that were randomly sampled from the test set.

Springer Nature 2021 LATEX template

18 State-aware Video Procedural Captioning

Action annotation Ingredient annotation

Add cold water

to the bowl and mix

Add cold water

to the bowl and mix

add, mix

action

label

flour eggs water batter shrimp oil

Step 1

Step 2

Step 3

Step 4

Step 5

Step 1
Add flour eggs to the bowl
Used: (flour, eggs)
Step 2
Add water to the bowl
Used: (step1, water)
Step 3
coat shrimp in the batter
Used: (step2, shrimp, batter)
Step 4
fry shrimp in oil
Used: (step3, oil)
Step 5
Remove shrimp from oil
Used: (step4)

Fig. 7 An annotation example of the visual simulator.

Fig. 7 shows an annotation example. For actions, we manually extracted
action words from sentences at each step (e.g., “add” and “mix” were extracted
in Fig. 7). For ingredients, step sentences do not explicitly include all of the
ingredients manipulated in the real world because they mention only the dif-
ference from the previous steps. For example, in step 2 in Fig. 7, a mixture of
“flour” and “eggs” is used, but it is not mentioned in the sentence. To address
this, we annotated the ingredient tree structure [24, 26], where each step node
indicates a mixture of ingredients. The tree structure allows us to determine
which ingredients are used at each step by back-tracking its leaf nodes.

Results. We compute micro-recall, precision, and F1 as evaluation metrics
for the visual simulator. Table 8 shows that VIV and VIVT achieve competi-
tive results; while VIV performs better in terms of ingredient selection, VIVT
performs better with respect to action selection. We also note that even dis-
tant supervision performs only F1=46.5% in the ingredient selection. This
happens because recipes mention only the difference from the previous steps;
“flour” and “eggs” are manipulated in step 2 in Fig. 7, but are not mentioned.
Therefore, distant supervision is not perfect for simulating human material
manipulation in the real world. However, it effectively guides the model to
predict incremental ingredients and is adequate for improving the captioning
performance of the VPC task.

4.6.2 Visualization of the learned embedding

To investigate how the visual simulator represents the state transition of ingre-
dients, we visualize the ingredient embedding by projecting it to 2D space
using t-SNE [46]. Fig. 8 shows the projected learned embedding of ingredi-
ents obtained by the VIVT model. Note that only raw (red) and updated
(blue)5 ingredients are shown in the figure. This result shows that the raw and

5The attention weight in the material selector was higher than 0.5.

Springer Nature 2021 LATEX template

State-aware Video Procedural Captioning 19

Table 9 Paragraph- and sentence-level word-overlap evaluation on the full prediction
setting.

I B1 B2 B3 B4 M C RL B1 B2 B3 B4 M C RL
Video only (V) 43.2 24.5 14.0 8.1 16.6 32.4 31.9 28.0 13.9 6.0 1.9 11.4 60.7 28.3
w/ Predict ingredients
V + Ingredients (VI) ✓ 42.5 24.3 13.9 8.1 16.5 28.4 32.3 28.5 14.6 5.9 2.2 11.8 62.1 28.7
VI + Visual simulator (VIV) ✓ 42.5 24.3 13.9 8.1 16.7 33.9 32.5 28.9 14.6 6.2 2.3 11.9 63.8 28.8
VIV + Textual re-simulator (VIVT) ✓ 42.7 24.0 13.3 7.7 16.7 31.6 31.9 28.3 14.0 5.5 2.3 11.7 60.8 28.3
w/ Ground-truth ingredients (Table 4)
V + Ingredients (VI) ✓ 49.1 29.5 17.6 10.5 20.3 63.3 35.2 31.9 18.0 9.3 3.8 13.9 81.7 31.3
VI + Visual simulator (VIV) ✓ 49.4 30.1 18.0 11.0 21.0 66.1 36.8 33.7 19.3 9.7 4.4 15.2 93.0 33.3
VIV + Textual re-simulator (VIVT) ✓ 49.4 30.9 18.3 11.3 21.1 67.1 37.1 33.5 19.4 10.1 4.9 15.2 96.7 33.7

Clip Predicted

ingredient

Recipe

category

tomatoes fattoush

tomatoes tomato
soup

tomatoes bean
burrito

Clip Predicted

ingredient

Recipe

category

milk eggs
benedict

milk croque
monsieur

milk naan

tomatoes

milk

Fig. 8 Learned embedding of ingredients obtained by the VIVT model. Note that only raw
and updated (the attention weight in the material selector is higher than 0.5) ingredients are
transformed by t-SNE [46]. Red and blue colors represent the raw and updated ingredients,
respectively.

updated points are located on the outer and inner sides of the distribution,
respectively6.

We also investigate the ingredients’ trajectory with the retrieved top-2
nearest ingredient vectors from updated ingredient vectors (see the zoomed
parts of the figure). The retrieved ingredients indicate their state-awareness;
that is, ingredients with similar states are embedded into the same cluster in
the vector space regardless of the difference in their recipe categories defined by
[1]. For example, the near vectors of updated “milk” with the “add” state are
also updated “milk” with “add”-like states (e.g., mix and pour). “tomatoes”
also have the same tendency.

Springer Nature 2021 LATEX template

20 State-aware Video Procedural Captioning

Ingredient Updated ingredient Raw

ingredient

Updated ingredient

(nearest vector)

(a) canadian bacon cut

 tuna tuna cut canadian

bacon

(b) lettuce add

 tomatoes

tomatoes added

 lettuce

(c) beef fry

 chicken
 chicken fried beef

(d) chicken cut

 tuna
 tuna added

 chicken (fail)

(e) drained
 spaghetti

 mix
 rice rice mixed drained

 spaghetti

(f) cut

 dogs

 fry
 chicken chicken fried cut

dogs

(g) cut

 potatoes

 fry
 chicken chicken mixed

 potatoes (fail)

Fig. 9 Arithmetics using the learned embedding of ingredients. Examples (a) to (d) and
(e) to (g) represent the first-order (raw-to-updated) and second-order (updated-to-updated)
transformations, respectively. (d) and (g) show the failure cases for each transformation.

4.6.3 Semantic vector arithmetic

To demonstrate the state-awareness of learned embedding, we attempt to apply
simple arithmetic operations as performed in the literature [47–49]. In the con-
text of our task, the state transition of ingredients is expected to be computed
as v(cut potatoes) = v(potatoes) + v(cut tomatoes) − v(tomatoes), where v
represents the map in the embedding space.

Fig. 9 shows seven examples of the arithmetic operations. From (a) to (d),
first-order transformations (raw-to-updated) are described, and from (e) to
(g), second-order transformations (updated-to-updated) are described. We can
see that the learned embedding simulates the state transition of ingredients by
specific actions in both transformations. For example, in (a) and (e), “cana-
dian bacon” and “drained spaghetti” are converted into “cut canadian bacon”
and “mixed drained spaghetti,” respectively. However, we observe some failure
cases, where (d) and (g), “raw chicken” is transformed into “added chicken” via
“cut” and “cut potatoes” into “mixed potatoes” via “fry.” In these examples,
ingredients are consistent before and after, but executed actions are different
because of the failure in action selection. We believe that noisy action label-
ing causes this failure, and a sophisticated action selection would ease this
problem.

Springer Nature 2021 LATEX template

State-aware Video Procedural Captioning 21

Table 10 Results of ingredient prediction on the full prediction setting.

Recall Precision F1
Video only (V) 13.5 19.8 16.0
w/ Predict ingredients
V + Ingredients (VI) 14.8 21.5 17.5
VI + Visual simulator (VIV) 16.2 22.5 18.8
VIV + Textual re-simulator (VIVT) 15.8 21.9 18.3
w/ Ground-truth ingredients (Table 6)
V + Ingredients (VI) 24.3 33.1 28.1
VI + Visual simulator (VIV) 28.9 43.2 34.7
VIV + Textual re-simulator (VIVT) 29.7 43.2 35.2

Table 11 Results of retrieval evaluation on the full prediction setting.

MedR (↓) R@1 R@5 R@10
Video only (V) 134 2.2 8.4 13.6
w/ Predict ingredients
V + Ingredients (VI) 138.5 2.1 7.8 13.1
VI + Visual simulator (VIV) 133.5 1.6 7.2 12.1
VIV + Textual re-simulator (VIVT) 141 2.0 7.0 12.6
w/ Ground-truth ingredients
V + Ingredients (VI) 65 4.6 14.5 21.2
VI + Visual simulator (VIV) 49 4.6 17.3 25.1
VIV + Textual re-simulator (VIVT) 49 5.2 17.3 25.2

Table 12 Performance of an ingredient decoder on the full prediction setting. Note that
we compute the micro-recall, precision, and F1 on the multi-label classification setting.

Recall Precision F1
VI 45.2 27.2 34.0
VI + Visual simulator (VIV) 46.0 27.8 34.7
VIV + Textual re-simulator (VIVT) 45.3 27.3 34.1

4.7 Experiments on the full prediction setting

This work discusses the proposed method under the condition that the input
has ground-truth ingredients. Then, a natural question arises: is the proposed
method effective for VPC using the predicted ingredients? To answer this ques-
tion, we conduct experiments on the full prediction setting, where the material
set is not given, but is predicted from the video clips in advance. To achieve
this, we add an ingredient decoder of the multi-label classifier and train the
entire model as multi-task learning (for details, see Appendix D).

Results. We conduct three types of evaluations: word-overlap evaluation,
ingredient prediction, and retrieval evaluation. Table 9, 10, and 11 shows their
results. Compared with the video-only (V) model, the performance of VI, VIV,
and VIVT models is competitive in word-overlap evaluation and ingredient
prediction, and is worse with respect to retrieval evaluation. Compared with
the models with ground-truth ingredients, we observe a performance drop by a
significant margin. This performance degradation likely occurs because of the
accumulated errors of the ingredient decoder and visual simulators; Table 12
indicates that the performance of the ingredient decoder is around F1=34% to
35% on average. Therefore, we conclude that the proposed method performs

6The raw and updated ingredients correspond to an embedding E0 by the material encoder and
an embedding En updated from E0 by the visual simulator, respectively.

Springer Nature 2021 LATEX template

22 State-aware Video Procedural Captioning

well with the input of ground-truth ingredients, rather than the predicted
ingredients. This is another limitation of our work.

5 Conclusion

In this paper, we proposed a new VPC task for generating a procedural text
from a clip sequence and material list. To generate a procedural text accu-
rately, it is essential for models to track material states in a clip sequence. To
achieve this, we proposed a novel VPC method, which modifies the existing
simulator as a visual simulator and incorporates it into the encoder-decoder
architecture. Our experimental results with thorough ablation demonstrate the
effectiveness of the proposed method, which outperforms the state-of-the-art
video captioning models. The learned embedding of materials demonstrates
that the simulator effectively captures their state transition.

Future work. We have two future directions: applying the proposed
method to harder settings and extending the scope of domains. Currently, our
method performs well on edited and segmented videos on the web, but it is
unclear whether it works with unsegmented web videos and unsegmented and
untrimmed videos, such as egocentric videos [50]. These settings are harder
than our experimental setting. Towards industrial use, we need to develop a
method that accepts these inputs. In addition, to confirm the generalizability
across domains, we also need to extend the method to other domains, such
as the biochemical domain [51]. Our approach utilizes a large-scale dataset,
which is not always available on the web in other domains. Thus, we need to
transfer procedural knowledge learned from cooking tasks to others.

Declarations

Funding and/or Conflicts of interests/Competing interests. This
work was supported by JSPS KAKENHI Grant Number JP21J20250 and
JP20H04210, and partially supported by JP21H04910, JP17H06100, JST-
Mirai Program Grant Number JPMJMI21G2, and JST ACT-I Grant Number
JPMJPR17U5. All of them are research grants from the Japanese government.
Disclosure of potential conflicts of interest. All authors state that no
financial/non-financial support has been received from any organization that
may have an interest in this work.

Data Availablity Statement

The datasets generated during and/or analysed during the current study are
available in our repository7: https://github.com/misogil0116/svpc pp

7Currently, the repository is a private mode. After our manuscript has been accepted, I will
release the code and dataset.

https://github.com/misogil0116/svpc_pp

Springer Nature 2021 LATEX template

State-aware Video Procedural Captioning 23

Appendix A Details of simulator

In this section, we describe the details of the visual simulator for the repro-
ducibility of the proposed method. Given the encoded vectors of the clip
sequence and material list (H,E0), the visual simulator, shown in Figure 3 in
the main paper, recurrently reasons the state transition of materials at each
step. Specifically, at the n-th step, given the n-th clip hn and (n−1)-th material
list En−1, the visual simulator predicts executed actions and involved mate-
rials in (1) the action and (2) material selector and it then updates the state
of materials in (3) the updater. After n-th reasoning, it outputs a state-aware
step vector un ∈ R3×d, which concatenates the n-th clip hn, selected action
f̄n and material vectors ēn (d represents the dimension of these vectors). The
visual simulator recurrently repeats the above process until processing the end
element of the clip sequence. For clarity, we explain the simulation process of
the visual simulator at the n-th step.

Action selector. Given a clip vector hn, the action selector outputs the
selected action vector f̄n by choosing actions executed in the clip from pre-
defined action embedding F . For example, in Figure 3 in the main paper, the
actions “crack” and “stir” are executed in the clip, thus both f crack and fstir

should be selected. To consider multiple actions, the action selector computes
a soft selection wp as action probability for each action in F . Then it outputs
the selected action vector f̄n as a weighted sum of the action embedding F
and action probability wp:

wp = MLP(hn) (A1)

w̄p =
wp∑
j w

j
p

(A2)

f̄n = w̄T
p F , (A3)

where MLP(·) represents two-layer MLPs with the sigmoid function and wp ∈
R∥F∥ is the attention distribution over ∥F∥ possible actions8.

Material selector. Based on the action probability wp and clip vector
hn, the material selector outputs the selected material vector ēn by choos-
ing materials involved in the clip from the material list En−1. For example,
in Figure 3 in the main paper, the raw “cheese” and manipulated “eggs” and
“butter” should be selected. To consider such a combination of raw and manip-
ulated material selection, the material selector has two attention modules: (1)
clip attention and (2) recurrent attention.

(1) The clip attention chooses relevant materials from the clip vector hn

and action probability wp:

ĥn = ReLU(W 1hn + b1) (A4)

dm = σ((en−1
m)TW 2[ĥn; wp]) (A5)

8wj
p represents j-th value of wp; thus, Eq.(6) indicates normalization of wp

Springer Nature 2021 LATEX template

24 State-aware Video Procedural Captioning

where W 1 and W 2 are linear and bilinear mapping, b1 and b2 are biases, and
en−1
m and dm represent the m-th material vector and its attention weight.
(2) Recurrent attention selects materials based on information from both

the current and previous clips. Using the result of clip attention, it computes a
soft selection an as a material probability for each material in the material list:

c = softmax(W 3ĥn + b3) (A6)

an
m = c1dm + c2a

n−1
m + c30 (A7)

where W 3 is a linear mapping, c ∈ R3 is the choice distribution, an−1
m is

the attention weight of the previous clip for each material, an
m is the final

distribution for each material, and 0 is a vector of zeros (providing the option
not to select any materials). Finally, using the calculated attention weights,
the selected material vector ēn is computed as the normalized weighted sum
of the selected materials.

αn
m =

an
m∑
j a

n
j

(A8)

ēn =
∑
m

αn
men−1

m . (A9)

Updater. Based on the selected actions and materials, the updater rep-
resents the state transition of materials by computing a new material vector
êm. To this end, it first calculates an action-aware proposal vector ln of mate-
rials with a bilinear transformation of the selected action and material vectors
(f̄n, ēn):

ln = ReLU(f̄nW 4ēn + b4), (A10)

where W 4 is a bilinear mapping.
Then, based on the material probability an, it computes the new material

vector êm by interpolating the action-aware proposal vector ln and current
material vector en−1

m :

êm = am
n ln + (1− am

n)en−1
m . (A11)

The new m-th material vector êm is assigned to En
m, which is forwarded to

the next (n+ 1)-th step.

Appendix B Detailed Annotation Process

We additionally annotated ingredients with the rest of the recipes (126 recipes)
to the YouCook2-ingredient dataset, and built the YouCook2-ingredient+
dataset.

We increased the dataset size by obtaining the missing videos through
YouCook2 author and annotating ingredients with these additional videos by

Springer Nature 2021 LATEX template

State-aware Video Procedural Captioning 25

Recipe pane Video pane

Ingredient annotation pane

Pre-estimated ingredients

Fig. B1 A screen of our browser-based web annotation tool. Annotators write ingredients
that appear in the recipes. To ease annotation, we preliminarily estimated ingredients using
the NER method [52] pre-trained on the English recipe flow graph corpus [53], and we set
the default values of inputs.

hiring one annotator to use the web tool shown in Fig. B1. This annotation tool
presents a recipe, corresponding video, and text boxes for writing ingredients.
In this paper, ingredients are defined as raw materials that are necessary to
complete the dish. For example, “tomato” and “cucumber” should be written
as ingredients, although “salad” should not be written because it represents a
mixture of ingredients.

To annotate ingredients easily, “jump” buttons, which allow annotators to
see a clip corresponding to a step, are implemented based on the start/end
timestamp from the original YouCook2 dataset. Moreover, to encourage anno-
tators to write ingredients easily, this tool displays estimated ingredients using
the named entity recognition (NER) model, flair9 [52] pre-trained on the
English recipe flow graph corpus (E-rFG corpus) [53]10. If the estimated words
are not appropriate for the ingredients, the ingredients can be deleted or
rewritten.

Springer Nature 2021 LATEX template

26 State-aware Video Procedural Captioning

Transformer-XL
MART

eggs milk herbs butter

crack the ..
(shifted right)

eggs
vocabulary

[SEP] [BOS] crack

ok

[CLS] the

Material encoder

copy?

Fig. C2 An overview of our baseline +ingredients (-I) implementation. These models also
incorporate the material encoder described in Section 3.2 and copy mechanism into the
baselines.

Appendix C Baseline implementation details

As our comparative models, we employed two state-of-the-art transformer-
based video captioning models: Transformer-XL [40] and MART [13]. These
models originally have no ingredient set in their inputs and copy mechanism
in their decoder; thus for a fair comparison, we prepare for additional baseline
+ingredient (-I) models, which incorporate the material encoder (Section 3.2)
and the copy mechanism into the baselines.

These models are based on the transformer that encodes sequential inputs
and decodes a sentence by attending all of the elements in the input sequence.
Thus, to fit this characteristic, we concatenate the encoded ingredient and
video vectors, and input them to the model, as shown in Fig. C2. When decod-
ing, based on the output of the decoder ok and ingredient vectors E0, the copy
mechanism calculates the copying gate to make a soft choice between selecting
an ingredient from the ingredient set or generating a word from the vocabulary.

Springer Nature 2021 LATEX template

State-aware Video Procedural Captioning 27

h1

max

eggs

cheese

butter

h2

h3

MLP

+

Sigmoid

Ingredient

decoder

Probability

Ingredient

label

top kh̄Clip

sequence

encoder

Downstream

Process

Sampled

_ingr

Fig. D3 An overview of how to integrate ingredient decoder into the model.

Appendix D Implementation and Training
Details on full prediction settings

Here, we discuss the implementation and training details of the full prediction
settings, where the material set is not given, but is predicted from the video
clips in advance. To address this, as described in Section 4.7, we added an
ingredient decoder of the multi-label classifier and trained the entire model as
multi-task learning.

Fig. D3 shows how to integrate the ingredient decoder into the model. The
ingredient decoder consists of a two-layered MLP with a sigmoid function,
and converts ĥ of a max-pooled vector of clip vectors into a probability vector
7∈ Rq of materials, where q indicates the number of unique ingredients appear-
ing more than three times in the training set (we obtained q = 668 in the
experiment). During training, we compute the ingredient decoder loss Lingr,
which is an asymmetric loss [36] on the multi-label classification settings, and
add it to the total loss defined in Eq (4). Note that we adopt teacher-forcing
[54] to stabilize the training; while the models learn using the ground-truth
ingredients for the downstream process in the training phase, they generate a
recipe based on predicted ingredients at the inference phase (we sample the top
k = 15 ingredients from the probability). Another modification of the model is
to remove the copy mechanism because we find that it degrades the captioning
performance with this setting.

References

[1] Zhou, L., Xu, C., Corso, J.J.: Towards automatic learning of procedures

9https://github.com/flairNLP/flair
10In the tag definitions of the E-rFG corpus, we display food entities as the estimated ingredi-

ents. These entities cannot be directly used for our dataset because the definition of food slightly
differs from the ingredient definition in this paper (for example, “it” or “salad” are recognized as
food in the E-rFG corpus). Therefore, we asked annotators to delete or rewrite ingredients if they
were not appropriate.

https://github.com/flairNLP/flair

Springer Nature 2021 LATEX template

28 State-aware Video Procedural Captioning

from web instructional videos. In: Proc. AAAI, pp. 7590–7598 (2018)

[2] Alayrac, J.-B., Bojanowski, P., Agrawal, N., Sivic, J., Laptev, I., Lacoste-
Julien, S.: Unsupervised learning from narrated instruction videos. In:
Proc. CVPR, pp. 4575–4583 (2016)

[3] Alayrac, J.-B., Sivic, J., Laptev, I., Lacoste-Julien, S.: Joint discovery of
object states and manipulation actions. In: Proc. ICCV, pp. 2127–2136
(2017)

[4] Miech, A., Zhukov, D., Alayrac, J.-B., Tapaswi, M., Laptev, I., Sivic,
J.: HowTo100M: learning a text-video embedding by watching hundred
million narrated video clips. In: Proc. ICCV, pp. 2630–2640 (2019)

[5] Miech, A., Alayrac, J.-B., Smaira, L., Laptev, I., Sivic, J., Zisser-
man, A.: End-to-end learning of visual representations from uncurated
instructional videos. In: Proc. CVPR, pp. 9879–9889 (2020)

[6] Shi, B., Ji, L., Liang, Y., Duan, N., Chen, P., Niu, Z., Zhou, M.: Dense
procedure captioning in narrated instructional videos. In: Proc. ACL, pp.
6382–6391 (2019)

[7] Shi, B., Ji, L., Niu, Z., Duan, N., Zhou, M., Chen, X.: Learning seman-
tic concepts and temporal alignment for narrated video procedural
captioning. In: Proc. ACMMM, pp. 4355–4363 (2020)

[8] Escorcia, V., Heilbron, F.C., Niebles, J.C., Ghanem, B.: DAPs: deep
action proposals for action understanding. In: Proc. ECCV, pp. 768–784
(2016)

[9] Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time
object detection with region proposal networks. In: Proc. NeurIPS, pp.
91–99 (2015)

[10] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko,
S.: End-to-end object detection with transformers. In: Proc. ECCV, pp.
213–229 (2020)

[11] Donahue, J., Hendricks, L.A., Rohrbach, M., Venugopalan, S., Guadar-
rama, S., Saenko, K., Darrell, T.: Long-term recurrent convolutional
networks for visual recognition and description. In: Proc. CVPR, pp.
2625–2634 (2015)

[12] Tan, G., Liu, D., Wang, M., Zha, Z.-J.: Learning to discretely compose
reasoning module networks for video captioning. In: Proc. IJCAI, pp.
745–752 (2020)

Springer Nature 2021 LATEX template

State-aware Video Procedural Captioning 29

[13] Lei, J., Wang, L., Shen, Y., Yu, D., Berg, T., Bansal, M.: Mart:
memory-augmented recurrent transformer for coherent video paragraph
captioning. In: Proc. ACL, pp. 2603–2614 (2020)

[14] Xiong, Y., Dai, B., Lin, D.: Move forward and tell: a progressive generator
of video descriptions. In: Proc. ECCV, pp. 489–505 (2018)

[15] Zhou, L., Kalantidis, Y., Chen, X., Corso, J.J., Rohrbach, M.: Grounded
video description. In: Proc. CVPR, pp. 6578–6587 (2019)

[16] Bosselut, A., Levy, O., Holtzman, A., Ennis, C., Fox, D., Choi, Y.: Sim-
ulating action dynamics with neural process networks. In: Proc. ICLR
(2018)

[17] Amac, M.S., Yagcioglu, S., Erdem, A., Erdem, E.: Procedural reasoning
networks for understanding multimodal procedures. In: Proc. CoNLL, pp.
441–451 (2019)

[18] Nishimura, T., Hashimoto, A., Ushiku, Y., Kameko, H., Mori, S.: State-
aware video procedural captioning. In: Proc. ACMMM (2021)

[19] Park, J.S., Rohrbach, M., Darrell, T., Rohrbach, A.: Adversarial infer-
ence for multi-sentence video description. In: Proc. CVPR, pp. 6598–6608
(2019)

[20] Zhou, L., Zhou, Y., Corso, J.J., Socher, R., Xiong, C.: End-to-end dense
video captioning with masked transformer. In: Proc. CVPR, pp. 8739–
8748 (2018)

[21] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Proc.
NeurIPS, pp. 5998–6008 (2017)

[22] Kiddon, C., Ponnuraj, G.T., Zettlemoyer, L., Choi, Y.: Mise en Place:
unsupervised interpretation of instructional recipes. In: Proc. EMNLP,
pp. 982–992 (2015)

[23] Maeta, H., Sasada, T., Mori, S.: A framework for procedural text
understanding. In: Proc. IWPT, pp. 50–60 (2015)

[24] Jermsurawong, J., Habash, N.: Predicting the structure of cooking recipes.
In: Proc. EMNLP, pp. 781–786 (2015)

[25] Pan, L., Chen, J., Wu, J., Liu, S., Ngo, C.-W., Kan, M.-Y., Jiang, Y.-G.,
Chua, T.-S.: Multi-modal cooking workflow construction for food recipes.
In: Proc. ACMMM, pp. 1132–1141 (2020)

[26] Nishimura, T., Hashimoto, A., Ushiku, Y., Kameko, H., Yamakata, Y.,

Springer Nature 2021 LATEX template

30 State-aware Video Procedural Captioning

Mori, S.: Structure-aware procedural text generation from an image
sequence. IEEE Access 9, 2125–2141 (2020)

[27] Gupta, A., Durrett, G.: Tracking discrete and continuous entity state for
process understanding. In: Proc. NAACL Workshop SPNLP, pp. 7–12
(2019)

[28] Santoro, A., Faulkner, R., Raposo, D., Rae, J., Chrzanowski, M., Weber,
T., Wierstra, D., Vinyals, O., Pascanu, R., Lillicrap, T.: Relational
recurrent neural networks. In: Proc. NeurIPS, pp. 7299–7310 (2019)

[29] Dalvi, B., Huang, L., Tandon, N., Yih, W.-t., Clark, P.: Tracking state
changes in procedural text: a challenge dataset and models for process
paragraph comprehension. In: Proc. NAACL, pp. 1595–1604 (2018)

[30] Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word
representation. In: Proc. EMNLP, pp. 1532–1543 (2014)

[31] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: Bert: pre-training
of deep bidirectional transformers for language understanding. In: Proc.
NAACL, pp. 4171–4186 (2019)

[32] Sun, C., Myers, A., Vondrick, C., Murphy, K., Schmid, C.: Videobert:
a joint model for video and language representation learning. In: Proc.
ICCV, pp. 7464–7473 (2019)

[33] See, A., Liu, P.J., Manning, C.D.: Get to the point: summarization with
pointer-generator networks. In: Proc. ACL, pp. 1073–1083 (2017)

[34] Jang, E., Gu, S., Poole, B.: Categorical reparametrization with gumble-
softmax. In: Proc. ICLR (2017)

[35] Mintz, M., Bills, S., Snow, R., Jurafsky, D.: Distant supervision for
relation extraction without labeled data. In: Proc. ACL-IJCNLP, pp.
1003–1011 (2009)

[36] Zamir, N., Noy, A., Friedman, I., Protter, M., Zelnik-Manor, L.: Asym-
metric loss for multi-label classification. arXiv (2020)

[37] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image
recognition. In: Proc. CVPR, pp. 770–778 (2016)

[38] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network
training by reducing internal covariate shift. In: Proc. ICML, pp. 448–456
(2015)

[39] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In:
Proc. ICLR, USA

Springer Nature 2021 LATEX template

State-aware Video Procedural Captioning 31

[40] Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q., Salakhutdinov, R.:
Transformer-xl: attentive language models beyond a fixed-length context.
In: Proc. ACL, pp. 2978–2988 (2019)

[41] Papineni, K., Roukos, S., Ward, T., Zhu, W.-J.: BLEU: a method for
automatic evaluation of machine translation. In: Proc. ACL, pp. 311–318
(2002)

[42] Lin, C.-Y., Och, F.J.: Automatic evaluation of machine translation quality
using longest common subsequence and skip-bigram statistics. In: Proc.
ACL, pp. 605–612 (2004)

[43] Banerjee, S., Lavie, A.: METEOR: an automatic metric for MT evalu-
ation with improved correlation with human judgments. In: Proc. ACL
Workshop IEEMMTS, pp. 65–72 (2005)

[44] Vedantam, R., Zitnick, C.L., Parikh, D.: CIDEr: consensus-based image
description evaluation. In: Proc. CVPR, pp. 4566–4575 (2015)

[45] Chen, J., Ngo, C.-w.: Deep-based ingredient recognition for cooking recipe
retrieval. In: Proc. ACMMM, pp. 32–41 (2016)

[46] van der Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of
Machine Learning Research 9, 2579–2605 (2008)

[47] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed
representations of words and phrases and their compositionality. In:
NeurIPS, pp. 3111–3119 (2013)

[48] Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning
with deep convolutional generative adversarial networks. arXiv (2015)

[49] Salvador, A., Hynes, N., Aytar, Y., Marin, J., Ofli, F., Weber, I., Torralba,
A.: Learning cross-modal embeddings for cooking recipes and food images.
In: Proc. CVPR, pp. 3020–3028 (2017)

[50] Damen, D., Doughty, H., Farinella, G.M., Fidler, S., Furnari, A., Kazakos,
E., Moltisanti, D., Munro, J., Perrett, T., Price, W., Wray, M.: Scaling
egocentric vision: The EPIC-KITCHENS dataset. In: Proc. ECCV, pp.
720–736 (2018)

[51] Nishimura, T., Sakoda, K., Hashimoto, A., Ushiku, Y., Tanaka, N., Ono,
F., Kameko, H., Mori, S.: Egocentric biochemical video-and-language
dataset. In: Proc. CLVL, pp. 3129–3133 (2021)

[52] Akbik, A., Blythe, D., Vollgraf, R.: Contextual string embeddings for
sequence labeling. In: Proc. COLING, pp. 1638–1649 (2018)

Springer Nature 2021 LATEX template

32 State-aware Video Procedural Captioning

[53] Yamakata, Y., Mori, S., Carroll, J.: English recipe flow graph corpus. In:
Proc. LREC, pp. 5187–5194 (2020)

[54] Williams, R.J., Zipser, D.: A learning algorithm for continually running
fully recurrent neural networks. Neural Computation 1, 270–280 (1989)

	Introduction
	Related Work
	Video captioning
	Procedural text understanding

	Proposed Method
	Overview
	Encoder
	Visual simulator
	Decoder
	Textual re-simulator
	Loss functions

	Experiments
	Experimental settings
	Word-overlap evaluation
	Ingredient prediction
	Retrieval evaluation
	Qualitative analysis
	Discussion of the learned embedding
	Quantitative evaluation of visual simulators
	Visualization of the learned embedding
	Semantic vector arithmetic

	Experiments on the full prediction setting

	Conclusion
	Details of simulator
	Detailed Annotation Process
	Baseline implementation details
	Implementation and Training Details on full prediction settings

