
State-aware Video Procedural Captioning
Taichi Nishimura1 Atsushi Hashimoto2 Yoshitaka Ushiku2 Hirotaka Kameko3 Shinsuke Mori3

taichitary@gmail.com,{atsushi.hashimoto,yoshitaka.ushiku}@sinicx.com,{kameko,forest}@i.kyoto-u.ac.jp
1Graduate School of Informatics, Kyoto University, 2OMRON SINIC X Corporation

3Academic Center for Computing and Media Studies, Kyoto University

ABSTRACT
Video procedural captioning (VPC), which generates procedural
text from instructional videos, is an essential task for scene under-
standing and real-world applications. The main challenge of VPC
is to describe how to manipulate materials accurately. This paper
focuses on this challenge by designing a new VPC task, generat-
ing a procedural text from the clip sequence of an instructional
video and material list. In this task, the state of materials is sequen-
tially changed by manipulations, yielding their state-aware visual
representations (e.g., eggs are transformed into cracked, stirred,
then fried forms). The essential difficulty is to convert such vi-
sual representations into textual representations; that is, a model
should track the material states after manipulations to better as-
sociate the cross-modal relations. To achieve this, we propose a
novel VPC method, which modifies an existing textual simulator
for tracking material states as a visual simulator and incorporates
it into a video captioning model. Our experimental results show
the effectiveness of the proposed method, which outperforms state-
of-the-art video captioning models. We further analyze the learned
embedding of materials to demonstrate that the simulators cap-
ture their state transition. The code and dataset are available from
https://github.com/misogil0116/svpc

CCS CONCEPTS
•Computingmethodologies→Natural language generation;
Scene understanding; Temporal reasoning.

KEYWORDS
procedural text, instructional video, simulator
ACM Reference Format:
Taichi Nishimura1 Atsushi Hashimoto2 Yoshitaka Ushiku2 Hirotaka Kameko3

Shinsuke Mori3. 2021. State-aware Video Procedural Captioning. In Pro-
ceedings of the 29th ACM International Conference on Multimedia (MM ’21),
October 20–24, 2021, Virtual Event, China. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3474085.3475322

1 INTRODUCTION
In recent years, there has been significant progress in vision and
language research that targets procedural text and instructional

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MM ’21, October 20–24, 2021, Virtual Event, China
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8651-7/21/10. . . $15.00
https://doi.org/10.1145/3474085.3475322

Material
list eggsbutter

Clip sequence

cheese

step 3

step 2

step 1 added

cracked
stirred

added
stirred

action(s) : state

State transition

add the
butter into a pan

crack the
eggs and stir

add the egg mixture
and cheese and stir

Procedural text

Figure 1: Concept of the proposed method. Given a clip se-
quence and material list, the proposed method generates a
procedural text by reasoning the state transition of materi-
als at each step.

video [1, 2, 23, 24, 47]. Among the various tasks in such research,
it is important to describe the content of the video using natural
language for both scene understanding and real-world applications.
For example, machines can help people learn new skills by pro-
viding a quick overview of instructional videos. To this end, video
procedural captioning [37, 38] (VPC), which is the task of generat-
ing a procedural text from an instructional video, has been proposed.
VPC requires a model (1) to segment important clips from a video,
(2) to enumerate materials used in the clips, and (3) to describe how
to manipulate them as a sentence for each clip. (1) and (2) have
been independently studied as the task of temporal clip segmen-
tation [12, 47] and object recognition [6, 33], respectively. In this
paper, we focus on (3) by designing a new VPC task and method of
generating a procedural text from a clip sequence pre-segmented
in an instructional video and material list (Figure 1).

Different from standard video captioning [11, 20, 40, 44, 46], our
task requires a model to describe detailed material manipulations
from visual observations. The manipulations change the state of
materials sequentially, yielding their state-aware visual representa-
tions (e.g., in step 2 in Figure 1, “eggs” are transformed into “cracked”
then “stirred”). The essential difficulty is to convert such visual rep-
resentations into textual representations; that is, a model should
track material states after manipulations to generate a procedural
text. For example, when generating step 3 in Figure 1, the models
should be aware that the yellow liquid in the bowl and white liquid
in the pan correspond to the eggs and butter manipulated in steps 1
and 2, respectively. Existing video captioning models cannot track
material states; thus, they miss materials, hallucinate them (e.g.,
say materials that are not in the clip), and lack details (e.g., say
“cook ingredients”), thereby degrading the captioning performance.
The above challenge is not specific to the cooking domain but is

https://github.com/misogil0116/svpc
https://doi.org/10.1145/3474085.3475322
https://doi.org/10.1145/3474085.3475322

universal across multiple domains, such as wet-lab experiments
and furniture assembly.

To address this challenge, this paper aims to generate procedural
texts by modeling the state transition of materials from visual ob-
servations. The same motivation, tracking materials against their
state transition, is shared by the research community in natural
language understanding (NLU). To address this, some NLU studies
have proposed a simulator to reason the state transition of materials
in a procedural text [3, 5]. These simulators read one sentence in a
procedural text, predict executed actions and involved materials,
and recurrently update the state of materials to simulate their state
transition.

Inspired by these ideas, we propose a novel VPC method, which
modifies an existing NLU simulator as a visual simulator and incor-
porates it into an encoder-decoder architecture. Figure 1 illustrates
the idea of the proposed method. Given a clip sequence and material
list, the proposed method reasons the state transition of materials
and generates a procedural text accurately. We emphasize that this
work is the first attempt to integrate the NLU simulator into a video
captioning model. In addition, based on the intuition that the state
transition of materials is consistently traceable from the generated
procedural texts, we attach a novel textual re-simulator, facilitating
the model to generate a procedural text even more accurately.

In our experiments, we test the proposed method in the cooking
domain because of its large variety of actions and materials (= ingre-
dients). We compare it with two state-of-the-art video captioning
models on four evaluations: word-overlap evaluation, ingredient
prediction, retrieval evaluation, and qualitative analysis, with thor-
ough ablation. Our experimental results show that the proposed
method outperforms the state-of-the-art video captioning models.
In addition, ablation studies show the effectiveness of integrating
visual and textual simulators into the model. Finally, we analyze the
learned embedding of materials to demonstrate that the simulators
effectively capture the state transition of materials.

2 RELATEDWORK
We describe the novelty of the proposed method in line with other
works on video captioning in Section 2.1. In Section 2.2, we discuss
simulators for procedural text understanding because they are the
main components of the proposed method.

2.1 Video captioning
Video captioning is an attractive field for both computer vision
and natural language processing communities. The task settings of
video captioning vary according to the nature of the input video
(e.g., one short clip, clip sequence, or long untrimmed video). Our
VPC task targets a clip sequence and thus belongs to the video
paragraph description [20, 30, 44], which aims to generate multiple
sentences for a given clip sequence pre-segmented in the video.

In the video paragraph description, recently, Transformer-based
[42] models have been featured because of their ability to capture
long-term information in a clip sequence, compared with LSTM-
based models [30, 44]. MART [20] is a transformer-based models
that achieves state-of-the-art performance in the video paragraph
description. The key contribution of MART is the introduction of

a gated recurrent memory module, which makes it easy for the
model to summarize important information in the previous step.

Different from standard video captioning, VPC requires a model
to generate detailed material manipulations for input clips. To this
end, previous VPC works [37, 38] target narrated videos and utilize
transcription as a cue to generate a procedural text by fusing video
and transcription features. Although these approaches work well
for narrated videos, transcription is not always available for all
instructional videos. Speaking during manipulations or adding nar-
ration to videos requires significant effort. Thus, the proposed VPC
task extends the previous VPC works to describe manipulations
even from non-narrated videos; our task allows a model to refer
to a human-created material list, which will be replaced with a
machine-recognized one in the future. Our task requires a model to
track material states that are changed by manipulations to generate
a procedural text accurately. To this end, we propose a novel VPC
method, which modifies an NLU simulator as a visual simulator
and incorporates it into a transformer-based encoder-decoder.

2.2 Procedural text understanding
In NLU, procedural texts are a popular target for understanding,
and recipes have been featured in this field. Many researchers have
proposed methods to understand recipes, which are roughly divided
into two categories: (1) a graph-based parser and (2) a reasoning-
based simulator.

A graph-based parser aims to train a model to map recipes into
graph or tree structures. Kiddon et al. [18] and Maeta et al. [22] pro-
posed a model to estimate a graph structure called the action graph
and recipe flow graph, respectively. Jermsurawong and Nizar [17]
proposed a parser with the SIMMR dataset, which provides a tree
structure for understanding ingredient merging operations. Then,
Pan et al. [28] and Nishimura et al. [27] provided new multimodal
tree structure datasets and parsers, which can be regarded as an
extension of the text-only version to a vision-and-language version.
These parsers focus on enabling machines to interpret recipes as
structural representations, rather than capturing the state transition
of ingredients in recipes.

A reasoning-based simulator aims to model the state transition
of ingredients in recipes by updating the ingredient states at each
step. Gupta and Durrett [13] proposed a structured simulator that
imposes constraints on the state transition of ingredients (e.g., stir-
fried potatoes are not cut in later steps). Amac et al. [3] proposed
a method to answer multi-modal question answering (QA) tasks
by reasoning the state transition of ingredients using a relation
reasoning network [35]. This paper builds upon the neural process
network (NPN) [5], which learns to estimate the state transition of
ingredients by predicting executed actions and involved ingredients.
Owing to the ability to capture the state transition of ingredients,
these simulators reported competitive results in QA tasks [3, 9]. Our
work adopts a reasoning-based simulator. We modify an NPN as
the visual simulator and incorporate it into the transformer-based
encoder-decoder architecture to enable the model to capture the
state transition of ingredients.

3 PROPOSED METHOD
In this section, we present the proposed method. After describing an
overview in Section 3.1, we explain the components of the proposed

Materials

eggs

Clip sequence

1

2

3

butter

Encoder (sec 3.2) �E

step 1

step 2

step 3

Material vectors

Clip vectors

Decoder (sec 3.4) �D

Training
and inference

Training
only
Loss

calculation

Generated

Visual simulator (sec 3.3) �Rv

Clip
sequence
encoder

Material
encoder

Decoder Textual
encoder

Textual re-simulator (sec 3.5) �Rt

step 1

cheese

e01

e02

e03

Sentence vectors

h1

h2

h3

State-aware
step vectors

u1

u2

u3

step 2 crack…

step 3

add…

add…

step 1

step 2 crack…
stir…

step 3

add…

add…

Ground truth

step 1

step 2

step 3

s1

s2

s3

step 1

step 2

step 3

added

cracked
stirred

added
stirred

added

cracked
stirred

added
stirred

Action
label

Material
label

Construct
distant supervision

un ⊂

Figure 2: An overview of the proposed method. To track material states in a clip sequence, we incorporate the visual simula-
tor 𝑅𝑣 into the transformer-based encoder-decoder architecture (𝐸 and 𝐷). In addition, based on our intuition that the state
transition of materials is traceable from the generated procedural texts, we attach the textual re-simulator 𝑅𝑡 to the model.

Figure 3: An overview of the (visual) simulator. The simulator recurrently reasons the state transition of the materials at each
step. Specifically, it predicts executed actions and involvedmaterials in (1) the action and (2)material selector and then updates
the state of materials in (3) the updater. The updated materials are forwarded to the next step. The textual re-simulator has
the same modules.

method from Section 3.2 to Section 3.5. Finally, in Section 3.6 we
explain the loss functions to train the model.

3.1 Overview
Figure 2 shows an overview of the proposed method. Given a
clip sequence V = (𝒗1, . . . , 𝒗𝑛, . . . , 𝒗𝑁) and a material list G =

(𝒈1, . . . ,𝒈𝑚, . . . ,𝒈𝑀), our goal is to output a procedural text Y =

(𝒚1, . . . ,𝒚𝑛, . . . ,𝒚𝑁) by recurrently generating sentences from cor-
responding clips. To generate a procedural text accurately, it is
essential for models to track material states in the clip sequence
(e.g., eggs are transformed into cracked, stirred, then fried forms).

Inspired by recent advances in NLU, we achieve this by mod-
ifying the existing reasoning-based NLU simulator NPN as the
visual simulator 𝑅𝑣 , and incorporate it into the transformer-based
encoder-decoder architecture (𝐸 and 𝐷). Specifically, given clip H

and material encoded vectors E0, the visual simulator reasons the
state transition of materials and outputs state-aware step vectors

as U = 𝑅𝑣 (H,E0). Then, the decoder 𝐷 outputs a procedural text
conditioned onU. We observe that this simple integration of the
visual simulator is effective for the model to generate a procedural
text accurately.

In addition, based on our assumption that the state transition
of materials should be consistently traceable from the generated
procedural text, we attach a novel textual re-simulator 𝑅𝑡 , encour-
aging the model to generate a procedural text even more accurately.
Specifically, the textual re-simulator 𝑅𝑡 reasons the state transition
of materials from the generated procedural text as 𝑅𝑡 (S,E0), where
S represents the encoded sentence vectors. Note that the textual
re-simulator is only used during the training phase and detached
during the inference phase.

3.2 Encoder
The input has two components: a material listG and a clip sequence
V. Thus, we develop a suitable encoder for each component.

Material encoder. To encode a material list, we input them
to concatenated neural networks of pre-trained GloVe [31]1 word
embedding and multi-layer perceptrons (MLPs) with the ReLU
activation function. Multi-word materials (e.g., parmesan cheese)
are represented by the average embedding vector of words. We
then add positional encoding (PE) to material indices, and obtain
the initial material vectors E0 = (𝒆0

1, . . . , 𝒆
0
𝑚, . . . , 𝒆

0
𝑀
).

Clip sequence encoder. A clip sequenceV is hierarchical be-
cause the clip sequence contains multiple clips, and each clip is
composed of sequential frames. Thus, to encode a clip sequence
effectively, we design a two-stage transformer suitable to encode
a sequence of sequences. First, the former transformer encodes
each clip into a feature vector by extracting the vector, which cor-
responds to the [CLS] token as in [10, 20, 39]. Then the latter
transformer is trained over the sequence to obtain the step-aware
clip vectorsH = (𝒉1, . . . ,𝒉𝑛, . . . ,𝒉𝑁) in the clip sequence.

3.3 Visual simulator
Based on the encoded vectors of the clip sequence and material
list (H,E0), the visual simulator, shown in Figure 3, reasons the
state transition of materials at each step. Specifically, at the 𝑛-th
step, given the 𝑛-th clip 𝒉𝑛 and (𝑛 − 1)-th material list E𝑛−1, the
visual simulator predicts executed actions and involved materials
in (1) the action and (2) material selector and then updates the state
of materials in (3) the updater. After 𝑛-th reasoning, it outputs a
state-aware step vector 𝒖𝑛 ∈ R3×𝑑 , which concatenates the 𝑛-th
clip 𝒉𝑛 , selected action 𝒇𝑛 and material vectors 𝒆𝑛 (𝑑 represents
the dimension of these vectors). The visual simulator recurrently
repeats the above process until processing the end element of the
clip sequence. This simulation process is the same as NPN except
for the input modality; we replace the textual sentence and entity
vectors for NLU with visual clipH and material vectors E0 for our
task. Thus, we only provide a high-level overview in this subsection,
and further details of the simulator are provided in Appendix A.

(1) Action selector. Given a clip vector 𝒉𝑛 , the action selector
outputs the selected action vector 𝒇𝑛 by choosing actions executed
in the clip from the predefined action embedding F. For example,
in Figure 3, the actions “crack” and “stir” are executed in the clip,
thus both 𝒇𝑐𝑟𝑎𝑐𝑘 and 𝒇𝑠𝑡𝑖𝑟 should be selected. To consider multiple
actions, the action selector computes a soft selection𝒘𝑝 as an action
probability for each action in F. Then it outputs the selected action
vector 𝒇𝑛 as a weighted sum of the action embedding F and action
probability𝒘𝑝 .

(2) Material selector. Based on the action probability 𝒘𝑝 and
clip vector 𝒉𝑛 , the material selector outputs a selected material
vector 𝒆𝑛 by choosing materials that are involved in the clip from
the material list E𝑛−1. For example, in Figure 3, the raw “cheese”
and manipulated “eggs” and “butter” should be selected. To consider
such a combination of raw and manipulated material selection, the
material selector has two attention modules: (1) clip attention and
(2) recurrent attention. While the clip attention selects materials
from the current clip vector 𝒉𝑛 , the recurrent attention selects
materials based on both the current and previous clips. Using these
modules, the material selector computes a soft selection 𝒂𝑛 as the

1We employ pre-trained 300D word embedding, which can be downloaded from
http://nlp.stanford.edu/data/glove.6B.zip

material probability for eachmaterial in thematerial listE𝑛−1. Then
it outputs the selected material vector 𝒆𝑛 as a weighted sum of the
material vectors E𝑛−1 and material probability 𝒂𝑛 .

(3) Updater. Based on the selected actions and materials, the
updater represents the state transition of materials by computing
a new material vector 𝒆̂𝑚 . To this end, it first calculates an action-
aware proposal vector 𝒍𝑛 of materials with a bilinear transformation
of selected action and material vectors (𝒇𝑛, 𝒆𝑛). Then, based on the
material probability 𝒂𝑛 , it computes the new material vector 𝒆̂𝑚 by
interpolating the action-aware proposal vector 𝒍𝑛 and the current
material vector 𝒆𝑛−1

𝑚 . The𝑚-th new material vector 𝒆̂𝑚 is assigned
to E𝑛

𝑚 , which is forwarded to the next (𝑛 + 1)-th step.

3.4 Decoder
The decoder 𝐷 outputs a procedural text by recurrently generating
sentences from the 𝑛-th output vector 𝒖𝑛 of the visual simulator.
As our decoder 𝐷 , we use the transformer, which achieves state-of-
the-art performance in video captioning tasks [37, 38, 48]. Our task
allows the model to refer to a material list, thus to encourage the
decoder to generate materials, we incorporate the copy mechanism
[36] into the decoder 𝐷 . When generating the 𝑘-th word in the
𝑛-th sentence, given the updated materials 𝒆𝑛𝑚 ∈ E𝑛 , the copy
mechanism first calculates the attention probability 𝜷𝑚

𝑛,𝑘
using the

bilinear dot product of the vectors of the decoder output 𝒐𝑛,𝑘 and
each material 𝒆𝑛𝑚 ∈ E𝑛 as:

𝜷𝑚
𝑛,𝑘

=
exp {(𝒐𝑛,𝑘)T𝑾𝑐𝒆𝑛𝑚}∑
𝑖 exp {(𝒐𝑛,𝑘)T𝑾𝑐𝒆𝑛𝑖 }

, (1)

where𝑾𝑐 represents a bilinear map.
Then it calculates the copying gate 𝑔𝑛,𝑘 (0 ≤ 𝑔𝑛,𝑘 ≤ 1), which

makes a soft choice between selecting a material from the material
list and generating a word from the vocabulary:

𝑔𝑛,𝑘 = 𝜎 (𝑾𝑔 [𝒐𝑛,𝑘 ;
∑
𝑚

𝜷𝑚
𝑛,𝑘

𝒆𝑛𝑚] + 𝒃𝑔), (2)

where [·], 𝜎 (·),𝑾𝑔 , and 𝒃𝑔 represent the concatenation function,
sigmoid function, linear map, and bias, respectively. Based on 𝑔𝑛,𝑘 ,
the final predicted word probability 𝑃𝑛,𝑘 (𝑤) is computed as the
weighted sum of the copy probability and generation probability
as follows:

𝑃𝑛,𝑘 (𝑤) =
(
1 − 𝑔𝑛,𝑘

)
𝑃voc
𝑛,𝑘

(𝑤) + 𝑔𝑛,𝑘
©­« 1
|𝒈𝑚 |

∑
𝑖:𝑤𝑖 ∈𝒈𝑚

𝜷𝑖
𝑛,𝑘

ª®¬ , (3)

where 𝑃voc
𝑛,𝑘

(𝑤) and |𝒈𝑚 | represent the probability of the 𝑛-th sen-
tence’s 𝑘-th word𝑤 in the vocabulary and the number of words of
in the𝑚-th material, respectively2.

3.5 Textual re-simulator
Because the state transition of materials is identical in the visual
and textual worlds, it should be consistently traceable from the
generated procedural texts. Based on this assumption, we add a
novel textual re-simulator 𝑅𝑡 , encouraging the model to generate a
procedural text even more accurately.

2To consider multiple words of materials, we divide the probability by the number of
words.

http://nlp.stanford.edu/data/glove.6B.zip

The textual re-simulator consists of two sub-modules: (1) a tex-
tual encoder and (2) a textual simulator. The textual encoder con-
verts a generated procedural text into step-aware sentence vectors
S = (𝒔1, . . . , 𝒔𝑛, . . . , 𝒔𝑁). First, it applies the straight-through ver-
sion of Gumbel softmax resampling [16] to sample a procedural
text, preserving the differentiable chain. The sampled procedural
text is further converted into feature vectors by computing the
average vector of the word embedding at each step. Note that the
word embedding is shared between the decoder and textual en-
coder. They are then converted into step-aware sentence vectors S
using a biLSTM encoder. Finally, based on S, the textual simulator,
another NPN described in Section 3.3, reasons the state transition
of materials again as 𝑅𝑡 (S,E0).

3.6 Loss functions
To train the model, we compute three types of losses: (1) sentence
generation loss L𝑠𝑒𝑛𝑡 , (2) visual simulation loss L𝑣_𝑠𝑖𝑚 , and (3)
textual re-simulation loss L𝑡_𝑠𝑖𝑚 .

(1) Sentence generation loss L𝑠𝑒𝑛𝑡 . This loss aims to train the
decoder, and is computed as the summed negative log-likelihood
for all input/output pairs {(V,G),Y} in the training set.

(2) Visual simulation loss L𝑣_𝑠𝑖𝑚 . This loss aims to train the
visual simulator, and consists of two losses: (1) material selection
loss and (2) action selection loss. These losses are computed as the
summed binary cross-entropy loss based on whether the materi-
als/actions are involved/executed in the clip. To avoid costly human
annotations, we compute the loss from distant supervision [26]
following the original NPN training method [5]. For the material
selection loss, labels are obtained whether or not each step contains
materials in the material list; for the action selection loss, labels
are obtained whether or not each step contains actions in the 384
actions defined by [5]. For example, from the sentence “crack the
eggs and stir,” “eggs” is extracted as a material label, and “crack”
and “stir” are extracted as an action label. As the action selection
loss, the simple binary cross-entropy does not work in our prelimi-
nary experiment because the ratio of positive to negative actions is
imbalanced; a few actions are positive and most of the actions are
negative. Thus, as the action selection loss, we use asymmetric loss
[45], which is a weighted binary cross-entropy loss, to defuse the
imbalanced problem.

(3) Textual re-simulation loss L𝑡_𝑠𝑖𝑚 . To train the textual re-
simulator, we also compute the above visual simulation loss from
the sampled procedural texts.

Total loss. Consequently, to train the entire model in an end-to-
end manner, the total loss is computed as

L𝑡𝑜𝑡𝑎𝑙 = L𝑠𝑒𝑛𝑡 + L𝑣_𝑠𝑖𝑚 + 𝜆L𝑡_𝑠𝑖𝑚, (4)

where 𝜆 is a hyper-parameter used for weighting the importance
of the textual re-simulation loss.

4 EXPERIMENTS
We test the proposed method in the cooking domain because pro-
cedural texts (= recipes) have a large variety of actions and materi-
als (= ingredients). We compare it with two state-of-the-art video
captioning models on four evaluations: word-overlap evaluation
(Section 4.2), ingredient prediction (Section 4.3), retrieval evaluation

Table 1: YouCook2-ingredient dataset statistics.

train val test
#recipes 1,233 100 329
#steps / #recipes 7.7 7.9 7.6
#ingredients / #recipes 10.4 10.2 10.3

(Section 4.4), and qualitative analysis (Section 4.5) with thorough
ablation. We also visualize the learned embedding of ingredients,
demonstrating that the visual simulator effectively reasons the state
transition of ingredients (Section 4.6).

4.1 Experimental settings
Dataset.We use the YouCook2 dataset [47], which consists of 2,000
cooking videos from 89 recipe categories. All of the videos have
3–16 clips with a start/end timestamp annotated by humans, and
each clip is also annotated with an English sentence. Note that
ingredients are not annotated in the original dataset; thus, we pre-
pared the YouCook2-ingredient dataset by annotating ingredients
with recipes. We downloaded the videos from the website, removed
invalid videos (e.g., corrupted or unavailable videos), and finally
obtained 1,664 videos. Then, we hired three annotators to write
ingredients that appear in the recipe (for annotation details, see
Appendix B). After this annotation process, we manually removed
recipe/video pairs that had no ingredient annotations (here, two
videos were removed). The remaining 1,662 valid videos were used
as the YouCook2-ingredient dataset and divided as follows: 1,233
for training, 100 for validation, and 329 for testing3. Table 1 shows
the statistics of the YouCook2-ingredient dataset.

Data preprocessing. As clip features, we use concatenated fea-
tures of appearance and optical flow provided by [47]. With re-
spect to the appearance, 2,048D feature vectors extracted from the
“Flatten-673” layer in ResNet-200 [14] are used, and for the optical
flow, 1,024D feature vectors extracted from the “global pool” layer
in BN-Inception [15] are used. As in [20], we truncated sequences
longer than 100 for the clip and 20 for the sentence and set the
maximum length of the clip sequence to 12. Finally, we built the
vocabulary based on words that occurred three times or more, and
the resulting vocabulary contained 951 words.

Hyper-parameter settings. For both the encoder and decoder
transformers, we set the hidden size to 768, the number of layers to
two, and the number of attention heads to 12. We train the model
following the optimization method described in [10, 20]; we use
the Adam optimizer [19] with an initial learning rate of 0.0001,
𝛽1 = 0.9, and 𝛽2 = 0.999. The L2 weight decay is set to 0.01, and
the learning rate warmup is over the first five epochs. We set the
batch size to 16, and continue training at most 50 epochs using
early stopping with CIDEr-D. We tune 𝜆 with four different values
𝜆 ∈ {0.25, 0.5, 0.75, 1.0} and set 𝜆 to 0.5 in our experiments (for
details, see Section 4.2).

Models.We test the proposed method by comparing it with two
state-of-the-art video captioning models, as described below.

• Transformer-XL [8] is a powerful transformer-based lan-
guage model that was originally proposed for capturing long-
term dependency in natural language. As in [20], we adapt

3We will release annotated ingredients and the dataset split.

Table 2: Word-overlap metrics for the baseline and the pro-
posed models with ablation studies. The scores in bold
are the best among the comparative models. “I” indicates
whether the model uses ingredient information or not.
B=BLEU, M=METEOR, C=CIDEr-D, RL=ROUGE-L.
Baseline I B1 B4 M C RL
Transformer-XL 37.8 6.7 14.8 25.0 31.5
+ Ingredients (Transformer-XL-I) ✓ 39.7 8.8 16.2 38.5 34.4
MART 39.8 7.7 15.6 35.9 32.2
+ Ingredients (MART-I) ✓ 44.6 10.2 18.3 49.7 36.4
Ours
Video only (V) 39.4 8.0 15.3 32.7 32.1
V + Ingredients (VI) ✓ 45.3 11.2 19.3 61.7 37.4
VI + Visual simulator (VIV) ✓ 48.3 11.9 21.2 73.8 40.0
VIV + Textual re-simulator (VIVT) ✓ 49.4 12.1 21.6 77.3 39.9

Table 3: Change in word-overlap metrics with controlled 𝜆.

B1 B4 M C RL
𝜆 = 0 (VIV) 48.3 11.9 21.2 73.8 40.0
𝜆 = 0.25 48.8 11.9 21.4 75.4 40.0
𝜆 = 0.5 49.4 12.1 21.6 77.3 39.9
𝜆 = 0.75 50.1 11.7 21.6 76.8 39.6
𝜆 = 1.0 49.2 12.0 21.6 76.1 40.1

it for our task; the model directly uses all of the previous
hidden states to generate a current sentence.

• MART [20] is a transformer-based video captioning model
that achieves state-of-the-art performance on the video para-
graph description. This model generates a sentence with a
gated recurrent memory module, which does not pass all
of the previous hidden states, but effectively summarizes
important information in the previous step.

Note that these models originally have no ingredient list in the
inputs and copy mechanism in the decoder. Thus for a fair compar-
ison, we prepare for additional baselines, baseline + ingredient (-I)
models, which incorporate the material encoder (Section 3.2) and
the copy mechanism into the models (for implementation details
of the models, see Appendix C).

Ablations. To reveal the impact of the components in the pro-
posed method, we conduct ablation studies on the following varia-
tions.

• Video only (V) encodes a clip sequence with the clip se-
quence encoder, then generates a procedural text.

• V + Ingredient (VI) incorporates the material encoder and
copy mechanism in the model.

• VI + Visual simulator (VIV) incorporates the visual simu-
lator into the VI model.

• VIV + Textual re-simulator (VIVT) additionally incorpo-
rates the textual re-simulator into the VIV model.

4.2 Word-overlap evaluation
Scores. To evaluate the captioning performance of the proposed
method, we compute commonly used word-overlap metrics, such as
BLEU [29], ROUGE-L [21], METEOR [4], and CIDEr-D [43] in the
test set. Note that they are computed at the recipe (paragraph)-level
following [20, 30, 44], not at the step (sentence)-level.

Table 4: Results of ingredient prediction.
Baseline Recall Precision F1
Transformer-XL 11.7 19.5 14.6
+ Ingredients (Transformer-XL-I) 19.7 33.6 24.8
MART 13.0 20.7 16.0
+ Ingredients (MART-I) 21.6 33.1 26.2
Ours
Video only (V) 10.9 19.3 13.9
V + Ingredients (VI) 24.8 40.3 30.7
VI + Visual simulator (VIV) 34.7 50.0 40.8
VIV + Textual re-simulator (VIVT) 35.5 51.5 42.0

Results. Table 2 shows the results of the word-overlap eval-
uation. We observe that the proposed method consistently out-
performs the state-of-the-art captioning models by a significant
margin. Our ablation studies show that the VIV model performs
better than the VI model, and the VIVT model further improves the
VIV model. This indicates that both the visual simulator and the
textual re-simulator are effective for generating a recipe accurately.

Performance change of controlling the hyper-parameter
𝜆.Table 3 shows the results by varying the 𝜆 ∈ {0.0, 0.25, 0.5, 0.75, 1.0}.
Note that 𝜆 = 0 is equivalent to the VIV model, which does not have
a textual re-simulator. The results indicate that (1) the VIVT model
performs better than the VIV model for any 𝜆 values, and (2) 𝜆 = 0.5
performs the best among the three metrics (BLEU4, METEOR, and
CIDEr-D) and obtains competitive results in BLEU1 and ROUGE-L.
Thus, we set 𝜆 = 0.5 in our experiments.

4.3 Ingredient prediction
To evaluate whether the models use correct ingredients at each step
without missing and hallucinating them, we design the ingredient
prediction, which measures the step-level overlap of ingredients
between generated and ground-truth recipes. To this end, we first
construct an ingredient dictionary from all unique ingredients in
the YouCook2-ingredient dataset. Then, at each step, we extract
ingredients that are exact-matched between generated recipes and
the ingredient dictionary. The same process is performed to extract
ingredients in the ground-truth recipes. Finally, based on the ex-
tracted ingredient sets, we compute the micro- recall, precision,
and F1 scores, respectively.

Results. Table 4 shows the results of the ingredient prediction.
This result shows that the proposed method outperforms the state-
of-the-art video captioning models. In our ablation, we observe
the same tendency of performance change to the word-overlap
evaluation. We note that the VIV model performs much better than
the VI model by 10% in F1, indicating that not only the copy mech-
anism but also the visual simulator are important for generating
ingredients correctly. We also notice that the VIVT model improves
the VIV model by 1.2% in F1, demonstrating the effectiveness of the
textual re-simulator.

4.4 Retrieval evaluation
To evaluate whether the generated procedural texts are sufficiently
concrete to describe the input clips, we design a step-level zero-
shot sentence-to-clip retrieval evaluation. As a retrieval model, we
employ the MIL-NCE model [23] pre-trained on the HowTo100M
dataset [24], achieving the state-of-the-art performance. In this

Ingredients flour, eggs, baking soda, salt, pepper, water, shrimp, batter, breadcrumbs, oil
step 1 step 2 step 3

Clip sequence

MART +
Ingredients
(MART-I)

add flour salt and pepper to a bowl and mix (✗
eggs, baking soda)

add milk egg and milk to the bowl and mix
(✗ water)

coat the dough in the batter (✗ shrimp,
breadcrumbs)

V + Ingredients
(VI)

mix flour salt pepper and breadcrumbs (✗
baking soda, eggs)

mix flour salt pepper and breadcrumbs with the
flour (✗ water)

coat the shrimp with the flour mixture (✗ batter,
breadcrumbs)

VI + Visual
simulator (VIV)

mix flour eggs and salt together
(✗ baking soda, pepper) add salt pepper to the eggs and mix (✗ water) coat the shrimp in the batter (✗ breadcrumbs)

+ VIV + Textual
re-simulator

(VIVT)

mix flour eggs baking soda salt and pepper and
salt

add water eggs breadcrumbs to a bowl of water
and mix coat the shrimp in the batter (✗ breadcrumbs)

Ground truth add flour eggs baking soda salt and pepper to
the bowl and stir add cold water to the bowl and stir cover the shrimp in the batter and

breadcrumbs

step 4 step 5

Clip sequence

MART + Ingredients
(MART-I) fry the onion rings in oil (✗ shrimp) remove the shrimp from the oil

V + Ingredients
(VI) heat oil in a pan and add the shrimp and fry remove the shrimp from the oil

VI + Visual simulator
(VIV) heat oil in a pan and fry the shrimp in it remove the shrimp from the oil

VIV + Textual re-simulator
(VIVT) fry the shrimp in oil remove the shrimp from the oil

Ground truth place the shrimp into a pan of hot oil remove the shrimp from the pan

Figure 4: Examples of generated recipes. Here, we compare fourmodels, MART-I (baseline), VI, VIV, and VIVTwith the ground
truth. Green bold and red words represent semantically correct and incorrect ingredients, respectively. Words in parentheses
indicatemissing ingredients, which should be included in the sentence. Note that parallel words in a sentence are not separated
from the commas in the YouCook2 dataset (see step 1 in the ground truth).

Table 5: Results of retrieval evaluation.↓ indicates that lower
is better.
Baseline MedR (↓) R@1 R@5 R@10
Transformer-XL 214 1.1 4.9 9.0
+ Ingredients (Transformer-XL-I) 144.5 1.9 7.0 11.3
MART 179 1.5 5.9 9.8
+ Ingredients (MART-I) 103 2.3 9.5 14.6
Ours
Video only (V) 244 1.2 4.5 7.3
V + Ingredients (VI) 90 3.8 11.6 18.1
VI + Visual simulator (VIV) 67 4.0 14.3 20.9
VIV + Textual re-simulator (VIVT) 66 4.2 13.9 21.4
Ground truth 10 15.2 39.3 51.8

task, given a generated step-level sentence as a query, the MIL-NCE
model embeds it and computes the cosine similarly as a score be-
tween the query vector and all the 2,493 clip vectors from the test
set. Then, we sort scores with clips in descending order and calcu-
late the median rank (MedR) and recall rate at the top 𝐾 (R@𝐾).
The median rank represents the median ranking of retrieved corre-
sponding clips, hence lower is better; in contrast, R@𝐾 represents
the percentage of all the step-level sentence queries where the
corresponding clip is retrieved in the top 𝐾 , hence higher is better.

Results. Table 5 shows the results of the retrieval evaluation.
We observe that the proposed method significantly outperforms the
state-of-the-art video captioning models. In MedR, the VIVT model

achieves 66, which is marginally lower than that of Transformer-XL-
I 144.5 and MART-I 103. This indicates that the proposed method
generates a more concrete recipe based on clips than the state-of-
the-art video captioning models. In our ablation, the VIV model
dramatically improves the VI model, indicating that the visual sim-
ulator is essential for generating concrete recipes. In addition, the
VIVT model shows a steady improvement from the VIV model,
indicating the effectiveness of the textual re-simulator.

4.5 Qualitative analysis
Figure 4 shows an example of the generated recipes. Other examples
are presented in Appendix D.

Insights. For the VPC task, it is important to generate correct
ingredients that are manipulated in a clip. MART-I fails to generate
ingredients correctly; the model tends to miss and hallucinate in-
gredients (e.g., “eggs” and “milk” in steps 1 and 2). We can observe
a similar tendency to the VI model, indicating that these models
superfluously generate ingredients listed in the ingredient list.

The VIV model suppresses these problems (e.g., “batter” in step
3). In addition, owing to the textual re-simulator, the VIVT model
can generate ingredients that are missed in the VIV model (e.g.,
“baking soda” and “pepper” in step 1, and “water” in step 2).

Limitations. Although the proposed method generates recipes
more accurately than the baseline models, we still found some dif-
ferences from the ground truth. For example, in step 2, the VIV

Clip Predicted

ingredient

Recipe

category

eggs shrimp
tempura

eggs scrambled
eggs

eggs eggs
benedict

Clip Predicted

ingredient

Recipe

category

flour shrimp
tempura

flour corn
dogs

flour naan

flour

eggs

Figure 5: Learned embedding of ingredients obtained by the
VIVT model. Note that only raw and updated (the attention
weight in thematerial selector is higher than 0.5) ingredients
are transformed by t-SNE [41]. Red and blue colors represent
the raw and updated ingredients, respectively.

and VIVT models refer to “salt,” “pepper,” “eggs,” and “breadcrumbs”
superfluously, but only “water” is added in the ground truth. In ad-
dition, in step 3, the VIV and VIVT models refer only to “batter,” but
“breadcrumbs” are also used. To solve these problems, we believe
that incorporating fine-grained ingredient recognition modules [7]
would help the model to generate a recipe more precisely.

4.6 Discussion of the learned embedding
To investigate how the visual simulator represents the state tran-
sition of ingredients, we visualize the ingredient embedding by
projecting it to 2D space using t-SNE [41]. Figure 5 shows the
projected learned embedding of ingredients obtained by the VIVT
model. Note that only raw (red) and updated (blue)4 ingredients
are shown in this figure. This result shows that the raw and up-
dated points are clearly divided into two main clusters in the vector
space5.

We also investigate the ingredients’ trajectory with the retrieved
top-2 nearest ingredient vectors from updated ingredient vectors
(see the zoomed parts of the figure). The retrieved ingredients in-
dicate their state-awareness; that is, ingredients with the similar
states are embedded into the same cluster in the vector space re-
gardless of the difference in their recipe categories defined by [47].
For example, the near vectors of updated “eggs” with the “beat”
state are also updated “eggs” with “beat”-like states (e.g., mix and
stir). “flour” also has the same tendency.

Semantic vector arithmetic. To demonstrate the state-aware
ness of learned embedding, we attempt to apply simple arithmetic
operations as performed in the literature [25, 32, 34]. In the context
of our task, the state transition of ingredients is expected to be

4The attention weight in the material selector was higher than 0.5.
5The raw and updated ingredients correspond to an embedding E0 by the material
encoder and an embedding E𝑛 updated from E0 by the visual simulator, respectively.

Ingredient Updated ingredient Raw

ingredient

Updated ingredient

(nearest vector)

(a) potatoes cut

 tomatoes tomatoes cut potatoes

(b) flour add

egg

egg added flour

(c) bacon fry

 onion
 onion fried bacon

(d) meat fry

 onion
 onion chopped

 meat (fail)

(e) chopped
 shallot

 add
 egg egg added chopped

shallot

(f) cut

 shrimp

 cover
 tortilla tortilla covered cut

shrimp

(g) cut

 potatoes

 add
 egg egg mashed

 potatoes (fail)

Figure 6: Arithmetics using the learned embedding of in-
gredients. Examples (a) to (d) and (e) to (g) represent the
first-order (raw-to-updated) and second-order (updated-to-
updated) transformations, respectively. (d) and (g) show the
failure cases for each transformation.

computed as 𝑣 (cut potatoes) = 𝑣 (potatoes) + 𝑣 (cut tomatoes) −
𝑣 (tomatoes), where 𝑣 represents the map into the embedding space.

Figure 6 shows seven examples of the arithmetic operations.
From (a) to (d), first-order transformations (raw-to-updated) are de-
scribed, and from (e) to (g), second-order transformations (updated-
to-updated) are described. We can see that the learned embedding
simulates the state transition of ingredients by specific actions in
both transformations. For example, in (a) and (e), “raw potatoes”
and “chopped shallot” are converted into “cut potatoes” and “added
chopped shallot,” respectively. However, we observe some failure
cases, where (d) and (g), “raw meat” is transformed into “chopped
meat” via “fry” and “cut potatoes” into “mashed potatoes” via “add.”
In these examples, ingredients are consistent before and after, but
executed actions are different because of the failure in action selec-
tion. We believe that noisy action labeling causes this failure, and a
sophisticated action selection would ease this problem.

5 CONCLUSION
In this paper, we proposed a new VPC task for generating a pro-
cedural text from a clip sequence and material list. To generate a
procedural text accurately, it is essential for models to track mate-
rial states in a clip sequence. To achieve this, we proposed a novel
VPC method, which modifies the existing simulator as a visual
simulator and incorporates it into the encoder-decoder architec-
ture. Our experimental results with thorough ablation demonstrate
the effectiveness of the proposed method, which outperforms the
state-of-the-art video captioning models. The learned embedding
of materials demonstrates that the simulator effectively captures
their state transition.

ACKNOWLEDGEMENT
Thisworkwas supported by JSPS KAKENHIGrant Number JP21J20250
and JP20H04210, and partially supported by JP21H04910, JP17H06100,
JST-Mirai Program Grant Number JPMJMI21G2, and JST ACT-I
Grant Number JPMJPR17U5.

REFERENCES
[1] Jean-Baptiste Alayrac, Piotr Bojanowski, Nishant Agrawal, Josef Sivic, Ivan

Laptev, and Simon Lacoste-Julien. 2016. Unsupervised learning from narrated
instruction videos. In Proc. CVPR. 4575–4583.

[2] Jean-Baptiste Alayrac, Josef Sivic, Ivan Laptev, and Simon Lacoste-Julien. 2017.
Joint discovery of object states and manipulation actions. In Proc. ICCV. 2127–
2136.

[3] Mustafa Sercan Amac, Semih Yagcioglu, Aykut Erdem, and Erkut Erdem. 2019.
Procedural reasoning networks for understanding multimodal procedures. In
Proc. CoNLL. 441–451.

[4] Satanjeev Banerjee and Alon Lavie. 2005. METEOR: an automatic metric for
MT evaluation with improved correlation with human judgments. In Proc. ACL
Workshop IEEMMTS. 65–72.

[5] Antoine Bosselut, Omer Levy, Ari Holtzman, Corin Ennis, Dieter Fox, and Yejin
Choi. 2018. Simulating action dynamics with neural process networks. In Proc.
ICLR.

[6] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexan-
der Kirillov, and Sergey Zagoruyko. 2020. End-to-end object detection with
transformers. In Proc. ECCV. 213–229.

[7] Jingjing Chen and Chong wah Ngo. 2016. Deep-based ingredient recognition for
cooking recipe retrieval. In Proc. ACMMM. 32–41.

[8] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc Le, and Ruslan
Salakhutdinov. 2019. Transformer-XL: attentive language models beyond a fixed-
length context. In Proc. ACL. 2978–2988.

[9] Bhavana Dalvi, Lifu Huang, Niket Tandon, Wen tau Yih, and Peter Clark. 2018.
Tracking state changes in procedural text: a challenge dataset and models for
process paragraph comprehension. In Proc. NAACL. 1595–1604.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
pre-training of deep bidirectional transformers for language understanding. In
Proc. NAACL. 4171–4186.

[11] Jeff Donahue, Lisa Anne Hendricks, Marcus Rohrbach, Subhashini Venugopalan,
Sergio Guadarrama, Kate Saenko, and Trevor Darrell. 2015. Long-term recurrent
convolutional networks for visual recognition and description. In Proc. CVPR.
2625–2634.

[12] Victor Escorcia, Fabian Caba Heilbron, Juan Carlos Niebles, and Bernard Ghanem.
2016. DAPs: deep action proposals for action understanding. In Proc. ECCV. 768–
784.

[13] Aditya Gupta and Greg Durrett. 2019. Tracking discrete and continuous entity
state for process understanding. In Proc. NAACL Workshop SPNLP. 7–12.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proc. CVPR. 770–778.

[15] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: accelerating deep
network training by reducing internal covariate shift. In Proc. ICML. 448–456.

[16] Eric Jang, Shixiang Gu, and Ben Poole. 2017. Categorical reparametrization with
gumble-softmax. In Proc. ICLR.

[17] Jermsak Jermsurawong and Nizar Habash. 2015. Predicting the structure of
cooking recipes. In Proc. EMNLP. 781–786.

[18] Chloé Kiddon, Ganesa Thandavam Ponnuraj, Luke Zettlemoyer, and Yejin Choi.
2015. Mise en Place: unsupervised interpretation of instructional recipes. In Proc.
EMNLP. 982–992.

[19] Diederik P. Kingma and Jimmy Ba. [n.d.]. Adam: A method for stochastic opti-
mization. In Proc. ICLR. USA.

[20] Jie Lei, Liwei Wang, Yelong Shen, Dong Yu, Tamara Berg, and Mohit Bansal. 2020.
MART: memory-augmented recurrent transformer for coherent video paragraph
captioning. In Proc. ACL. 2603–2614.

[21] Chin-Yew Lin and Franz Josef Och. 2004. Automatic evaluation of machine
translation quality using longest common subsequence and skip-bigram statistics.
In Proc. ACL. 605–612.

[22] Hirokuni Maeta, Tetsuro Sasada, and Shinsuke Mori. 2015. A framework for
procedural text understanding. In Proc. IWPT. 50–60.

[23] Antoine Miech, Jean-Baptiste Alayrac, Lucas Smaira, Ivan Laptev, Josef Sivic, and
Andrew Zisserman. 2020. End-to-end learning of visual representations from
uncurated instructional videos. In Proc. CVPR. 9879–9889.

[24] Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac, Makarand Tapaswi, Ivan
Laptev, and Josef Sivic. 2019. HowTo100M: learning a text-video embedding by
watching hundred million narrated video clips. In Proc. ICCV. 2630–2640.

[25] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
NeurIPS. 3111–3119.

[26] Mike Mintz, Steven Bills, Rion Snow, and Daniel Jurafsky. 2009. Distant supervi-
sion for relation extraction without labeled data. In Proc. ACL-IJCNLP. 1003–1011.

[27] Taichi Nishimura, Atsushi Hashimoto, Yoshitaka Ushiku, Hirotaka Kameko, Yoko
Yamakata, and Shinsuke Mori. 2020. Structure-aware procedural text generation
from an image sequence. IEEE Access 9 (2020), 2125–2141.

[28] Liangming Pan, Jingjing Chen, Jianlong Wu, Shaoteng Liu, Chong-Wah Ngo,
Min-Yen Kan, Yu-Gang Jiang, and Tat-Seng Chua. 2020. Multi-modal cooking
workflow construction for food recipes. In Proc. ACMMM. 1132–1141.

[29] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a
method for automatic evaluation of machine translation. In Proc. ACL. 311–318.

[30] Jae Sung Park, Marcus Rohrbach, Trevor Darrell, and Anna Rohrbach. 2019.
Adversarial inference for multi-sentence video description. In Proc. CVPR. 6598–
6608.

[31] Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. GloVe:
global vectors for word representation. In Proc. EMNLP. 1532–1543.

[32] Alec Radford, Luke Metz, and Soumith Chintala. 2015. Unsupervised representa-
tion learning with deep convolutional generative adversarial networks. arXiv.

[33] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster R-CNN: to-
wards real-time object detection with region proposal networks. In Proc. NeurIPS.
91–99.

[34] Amaia Salvador, Nicholas Hynes, Yusuf Aytar, Javier Marin, Ferda Ofli, Ingmar
Weber, and Antonio Torralba. 2017. Learning cross-modal embeddings for cook-
ing recipes and food images. In Proc. CVPR. 3020–3028.

[35] Adam Santoro, Ryan Faulkner, David Raposo, Jack Rae, Mike Chrzanowski,
Theophane Weber, Daan Wierstra, Oriol Vinyals, Razvan Pascanu, and Timothy
Lillicrap. 2019. Relational recurrent neural networks. In Proc. NeurIPS. 7299–7310.

[36] Abigail See, Peter J. Liu, and Christopher D. Manning. 2017. Get to the point:
summarization with pointer-generator networks. In Proc. ACL. 1073–1083.

[37] Botian Shi, Lei Ji, Yaobo Liang, Nan Duan, Peng Chen, Zhendong Niu, and Ming
Zhou. 2019. Dense procedure captioning in narrated instructional videos. In Proc.
ACL. 6382–6391.

[38] Botian Shi, Lei Ji, Zhendong Niu, Nan Duan, Ming Zhou, and Xilin Chen. 2020.
Learning semantic concepts and temporal alignment for narrated video proce-
dural captioning. In Proc. ACMMM. 4355–4363.

[39] Chen Sun, Austin Myers, Carl Vondrick, Kevin Murphy, and Cordelia Schmid.
2019. VideoBERT: a joint model for video and language representation learning.
In Proc. ICCV. 7464–7473.

[40] Ganchao Tan, Daqing Liu, Meng Wang, and Zheng-Jun Zha. 2020. Learning to
discretely compose reasoning module networks for video captioning. In Proc.
IJCAI. 745–752.

[41] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of Machine Learning Research 9 (2008), 2579–2605.

[42] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proc. NeurIPS. 5998–6008.

[43] Ramakrishna Vedantam, C. Lawrence Zitnick, and Devi Parikh. 2015. CIDEr:
consensus-based image description evaluation. In Proc. CVPR. 4566–4575.

[44] Yilei Xiong, Bo Dai, and Dahua Lin. 2018. Move forward and tell: a progressive
generator of video descriptions. In Proc. ECCV. 489–505.

[45] Nadav Zamir, Asaf Noy, Itamar Friedman, Matan Protter, and Lihi Zelnik-Manor.
2020. Asymmetric loss for multi-label classification. arXiv.

[46] Luowei Zhou, Yannis Kalantidis, Xinlei Chen, Jason J. Corso, and Marcus
Rohrbach. 2019. Grounded video description. In Proc. CVPR. 6578–6587.

[47] Luowei Zhou, Chenliang Xu, and Jason J. Corso. 2018. Towards automatic
learning of procedures from web instructional videos. In Proc. AAAI. 7590–7598.

[48] Luowei Zhou, Yingbo Zhou, Jason J. Corso, Richard Socher, and Caiming Xiong.
2018. End-to-end dense video captioning with masked transformer. In Proc. CVPR.
8739–8748.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Video captioning
	2.2 Procedural text understanding

	3 Proposed Method
	3.1 Overview
	3.2 Encoder
	3.3 Visual simulator
	3.4 Decoder
	3.5 Textual re-simulator
	3.6 Loss functions

	4 Experiments
	4.1 Experimental settings
	4.2 Word-overlap evaluation
	4.3 Ingredient prediction
	4.4 Retrieval evaluation
	4.5 Qualitative analysis
	4.6 Discussion of the learned embedding

	5 Conclusion
	References

