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Abstract. These days, there are more than a million recipes on the
Web. When you search for a recipe with one query such as “nikujaga,”
the name of a typical Japanese food, you can find thousands of “nikujaga”
recipes as the result. Even if you focus on only the top ten results, it is
still difficult to find out the characteristic feature of each recipe because
a cooking is a work-flow including parallel procedures. According to our
survey, people place the most importance on the differences of cooking
procedures when they compare the recipes. However, such differences are
difficult to be extracted just by comparing the recipe texts as existing
methods. Therefore, our system extracts (i) a general way to cook as
a summary of cooking procedures and (ii) the characteristic features
of each recipe by analyzing the work-flows of the top ten results. In
the experiments, our method succeeded in extracting 54% of manually
extracted features while the previous research addressed 37% of them.

1 Introduction

Cooking is one of the most fundamental activities of human social life. It is not
only connected with the joy of eating but also deeply affects various aspects of
human life such as health, dietary, culinary art, entertainment, human commu-
nication, and so on. Hene, the number of recipes on the Web has been increasing
rapidly in recent years. In Japan, COOKPAD, the biggest recipe portal site,
has more than 1.5 million recipes and 12 million users [14]. Rakuten-Recipe
has more than 620,000 recipes. In the United States, Food.com has more than
475,000 recipes, while Allrecipe.com and FoodNet Work.com have more than ten
million users. Google also offers a service for recipe search.

However, more is not always better. Even if you submit just one query, such as
“nikujaga,” to COOKPAD, you can find more than 5,600 “nikujaga’ recipes. Of
course, all of the recipes explain how to cook “nikujaga,” but they are somewhat
different. Some recipes fry meat in advance while others fry meat after an onion.
Some recipes add a soy-source during frying while others mix it during stewing.
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The title is not useful because it was given by the recipe authors freely and it
reflects only his/her subjective evaluation. You try to find your favorite recipe
by reading the text parts of several recipes. However, it is very hard because a
cooking is a work-flow with parallel procedures and it requires much effort to
understand, memorize, and compare these cooking procedures.

Because all of the recipes are obtained using the same query “nikujaga,” the
ways of cooking described by these recipes must be similar. Therefore, we propose
a method for finding their general way to cook as the summary by extracting
the common structure of the cooking flow-graphs from the top ten search re-
sults. Moreover, the system obtains the characteristic features of each recipe by
comparing it with the generated general recipe.

As it is introduced in Section 3.1, we are researching a method that converts a
recipe text to a flow-graph of cooking procedures. Therefore, we assume that all
recipes had been converted to such flow-graphs using this method. Additionally
in this paper, a recipe flow graph is assumed to be a tree structure because
the most of the recipes’ flow-graphs can be represented as tree-type graphs.
Hereafter, we refer to it as a “recipe tree.” The system conducts node-to-node
mapping of all pairs of recipe trees and integrates the most similar pair of recipes.
The system repeats this integration and finally obtains one general recipe. The
characteristic features of each recipe can be extracted by mapping the recipe
tree and the obtained general recipe tree and finding the differences.

2 Feature Types and Their Importances of Recipe

In this section, we analyses which type of feature should be extracted from a
recipe in the purpose.

To analyze recipe feature types and their importances, we conducted a sur-
vey. We searched on the recipe portal site COOKPAD [14] with the four queries
“nikujaga,” “carbonara,” “beef stew,” and “nigauri (a name of an ingredient),”
and collected top 10 recipes for each query. Therefore, these four recipe sets of 10
recipes respectively, 40 recipes in total, were obtained as a test data. We asked
two annotators, who were undergraduate students, to extract characteristic fea-
tures of each recipe comparing with the other nine recipes in each set manually.
We also asked them to assign a rank to each feature according its importance
when they found more than two features for one recipe. Consequently, 197 fea-
tures with 29 duplication and 168 unique features were obtained from 40 recipes
in total. We classified obtained 168 features into seven types as follows.

— Additional ingredient: when a recipe has an uncommon ingredient.
— Reduced ingredient: when a recipe does not have a common ingredient.
— Ingredient quantity: when a quantity of an ingredient is significantly differ
from the others.
Uncommon action: when a recipe has an uncommon action.
ex.) The potato is immersed in water after cutting.
— Action order: when an order of actions differs from the other recipes.
ex.) Soy source is mixed when it fries ingredients in a recipe while soy
source is mixed after adding water to the ingredients in other recipes.
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— Tool: when an uncommon tool is used.
— Writing type: when it is different writing type from the others.

The number and the proportions of each type in the manually extracted fea-
tures are shown in Table 1. As you see in the table, the most common feature
is additional ingredient. Though the proposed method is able to extract this
feature, even a simple method that compares the member of the ingredient list
of the recipe with the others can also extract such as [10]. Reduced ingredient
and quantity of ingredient are also able to be extracted in the same way. Mean-
while, the annotators considered the action order is the most important features
even though the proportion of it was not very high. Uncommon action is also
considered more important than additional ingredient. Since these two features
cannot be extracted just by comparing the words of the instructions, it is said
that sophisticated analysis is required to find important recipe features.

Table 1. Manually extracted features for each categories

Type Ave. rank Nikujaga Carbonara Nigauri Beef stew  Total
Action order 1.8 5 (8%) 1(2%) 1 (2%) 5 (11%) 12 (%)
Quantity of ingredient 21 6(9%) 0(0%) 0(0%) 1(2%) 7 (4%)
Reduced ingredient 2.2 6 (9%) 1(2%) 0(0%) 1 (2%) 8 (5%)
Uncommon action 2.4 11 (17%) 2 (5%) 4 (9%) 7 (16%) 24 (14%)
Additional ingredient 2.5 28 (44%) 39 (89%) 3 (7%) 34 (77%) 104 (62%)
Writing style 37 1(2%)  0(0%) 0(0%) 2(5%) 3 (2%)
Cooking tool 3.9 7 (11%) 1(2%) 0 (0%) 2 (5%) 10 (6%)
Total 64 44 8 52 168

3 Pre-processing for Recipes

3.1 Recipe Tree: The Work-Flow Format of a Recipe

We first convert recipe procedures written in a natural language into a tree-type
work-flow graph. Fig. 1 shows an example of a recipe tree. In the recipe tree,
each leaf node corresponds to an ingredient of the recipe such as “a potato,”
“meat,” and “sugar.” Each intermediate node corresponds to a cooking action
of eleven categories, “Mix,” “Cut,” “Fry,” “Roast,” “Boil,” “Cook in boiling
water,” “Deep frying,” “Heat by instrument,” “Steam,” “Stop ongoing action”
and “Others”. The root node corresponds to the completed dish which is ready
to serve. The label of each node is a pair of a type, ingredient or cooking action,
and a word sequence corresponding to the name. The root node is the only
exception and has the dish name. For instance, a sentence “A potato is cut to
larger bite-sized pieces, and is immersed in water” corresponds to the sub-tree
in the dotted circled in Fig. 1.
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Fig. 1. A recipe tree of one “nikujaga”

Table 2. Named entity tags

NE Tag Meaning NE Tag Meaning

F Food Ac Action by the chef
T Tool Af Action by foods

D Duration S State of foods

Q Quantity

Such a recipe tree can be automatically converted from a recipe text using
natural language processing (NLP) [3-5]. NLP for recipe texts proposed in [5]
consists of two important parts based on machine learning methods. The first one
is named entity (NE) recognition after word identification which extracts impor-
tant word sequences shown in Table 2 appearing in the recipe text. The second
one is predicate-argument structure (PAS) analysis after syntactic analysis which
determine the subject, the direct object, and the indirect object (arguments) for
a verb (predicate). In this paper we adopt the same named entity definition but
only use F (Food) for ingredient nodes and Ac (Action by the chef) for cooking
action nodes. We use PAS of the verbs marked as Ac which corresponds to the
arcs in recipe trees.

It is reported that the NE recognition accuracy went up from 53.4% to 67.0%
by only 5 hour annotation [5]. The NE recognition accuracy for the general tag
set (person name, organization name, place, etc.) is around 80% ~ 90% when
enough large training data are available [7]. In addition, there are less variations
for food names and cooking action names than for the general tag set. Therefore
we can say that it is possible to achieve about 90% accuracy just by preparing
practically large training data. Currently the accuracy of PAS analysis is less
than NE recognition. In the recipe domain, however, the vocabulary is much
more limited than in general domains of NLP such as newspaper articles. Thus
a domain adaptation technique for PAS analysis [12] allows us to achieve an
enough high accuracy with a practical size of the training data.
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As we described above, the NLP community is working on recipe texts, as well
as patent disclosures etc., as a domain adaptation example of NE recognition or
PAS analysis. Since currently the accuracies are, however, not sufficiently high
for the application we propose in this paper, in the experiments we use recipe
trees manually converted from recipe texts.

3.2 Tree Mapping Algorithms

Tree is one of the most common and well-studied combinatorial structures in
computer science. Comparison of two (or more) trees is a fundamental task in
many applications such as computational biology, structured text databases and
image analysis. Various measures have been proposed and studied for comparison
of two trees. Among such measures, tree edit distance is the most common
and well studied. For two labeled trees T" and 7", the edit distance from T
to 7" is measured by the minimum cost sequence of edit operations needed to
transform 7 into T”. The edit operations are deletion, insertion, and substitution.
For ordered labeled trees, efficient algorithms for computing the edit distance
have been proposed in the literature. Tai [9] developed the first polynomial time
algorithm for the problem, several improvements followed, and Demaine et al. [1]
proposed an optimal algorithm that runs in O(n3) time for n-node trees.

For unordered labeled trees, including recipe trees, the problem of computing
the edit distance between two trees is difficult (more precisely, the problem is
known to be NP-hard [13]). Therefore, it is reasonable to try to develop heuristic
algorithms for this case. Shasha et al. [8] proposed a simple heuristic algorithm by
sorting and iterative improvement algorithms based on metaheuristics. However,
they focused on only the number of child for ordering while label matching is
required for our purpose. Do and Rahm [2] proposed a system called COMA,
which provides an extensible library of simple and hybrid match algorithms, but
the editing costs cannot be adjusted flexibly.

For a given set of trees, computing one tree that is similar to all the other
trees is a challenging task and has been studied in the literature. Phillips and
Warnow [6] showed the hardness of this problem and proposed a heuristic method
for computing a tree called the asymmetric median tree. Their method works
well for evolutionary trees (in which species label the leaves). However, it is
hard to apply this method to our application and different heuristic methods
are necessary to compute a general recipe tree.

4 Generation of General Recipe Tree
4.1 Framework
The procedures of the system are as follows:

[Step 1] Ten recipes are given as a search result. In advance, every recipe
has been converted to a recipe tree, in the form of a rooted, labeled, and
unordered tree. Set the weight w of a tree T' to one for each recipe tree.
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[Step 2] The system calculates an approximate edit distance d(T,T") between
every pair of trees (T,7”). For each calculation, two unordered trees are
transformed into ordered trees so that the distance of them becomes closer.

[Step 3] The trees of the closest pair 7" and T" are integrated to one tree. Let
T and T’ be the two trees to be integrated, and w and w’ their weights.
The system generates a new tree with the properties that (i) the distance
from T is around d(T,T")w’/(w + w’), (ii) the distance from 7" is around
d(T,T"w/(w + w'), and (iii) the weight is w + w’. After adding the new
tree to the current set of trees and removing two trees 7' and T’ from it,
our algorithm returns to Step 2, if two or more trees are remaining. Go to
Step 4 when the number of trees becomes one. The final integrated tree, the
general tree Tyey, is the output of our system.

[Step 4] Extract the characteristic features of each recipe tree by mapping the
recipe tree with the general tree T,., and finding the differences.

4.2 Transformation to Ordered Tree

As stated in Section 3.2, it is difficult to compute the accurate edit distance
between unordered labeled trees. Therefore, the system converts each unordered
tree into an ordered tree so that an approximate edit distance between them
becomes small.

In our heuristic method, the system decides the order of children for each node
from the root node to leaf nodes. At the beginning, the system finds the node
that is closest to the root node and that has more than two or more children for
each tree. Let v and v be the found nodes of two trees, and uy,us,...,u, and
V1,V3,...,0q be the child nodes of v and v. To decide the orders of these child
nodes, the system solves the following problem.

Maximize Z c(i, j)x(i, )

Subject to y(i) = Zx(i,j) >0(G=12,...,p)
2(i) =D w0) 20 (G =1,2...q)
z(i, j)(y(0) —1)(z(j) —1)=0(G=1,....p, j=1,....9)
z(i, j) € {0,1},

where x(7,7) is the decision variable whose value is one if and only if node u;
is mapped to node v;, and ¢(i, j) denotes the number of common ingredients
which appear in both sub-trees whose root nodes are u; and v;. Note that the
system does not define node-to-node mapping at this point. One reason is that
the number of children p and g may be different, and another reason is that a
one-to-many mapping can be suitable for some cases (see Fig. 2 as an example).
After one-to-one or one-to-many mappings are obtained by solving this problem
at nodes u and v, the procedure goes to their descendants (i.e., solving similar
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<> More than one leaf of these subtrees is the same ingredient.

Fig. 2. Example for transformation to ordered trees

problems for each corresponding sub-tree). The procedure stops when it cannot
find a descendant.

4.3 Node-to-Node Mapping between Two Trees

For two rooted, labeled and ordered trees T and 1", we compute the minimum
cost sequence of edit operations needed to transform 7" into 7". The edit opera-
tions are (i) deletion: deleting a node from a tree, (ii) insertion: inserting a node
into a tree, and (iii) substitution: changing one node of a tree into another node.
Each operation has its cost cger(w), Cins(u), and cgup(u, v), respectively.

Now, let consider such case that “Stir the onion and add the carrot.” Note
a chef keeps stirring the vegetables when he/she add the carrot. It means that
“Mix” including “add”, “throw in”, “put” and “pour” can be given to the other
cooking action. “Other” is also in the same way. Therefore, we set cgup(u,v)
depend on combination of v and v’ as followings.

When u is a leaf:

Csub(u,v) =0 if the labels of u and v are the same.

Csub(u,v) = 00 otherwise.

‘When u is a root:

csub(u,v) =0 if v is a root.

Csub(u,v) =00 otherwise.

‘When u is an intermediate node:

csub(u,v) =0 if the labels of u and v are the same.

Csub(u, v) = Csupr  if at least one of the labels of uw or v is “Mix” or “Others”.
Csub(u, V) = Csypa  if the labels of u and v differ.

The cost of cger(u) and ¢;,5(u) are set a constant number Cgyep ins for all nodes.
The minimum cost sequence of edit operations required to transform 7 into
T’ can be computed using the algorithm of Tai [9]. Although this algorithm runs
fast enough for our data set, more sophisticated algorithms (e.g., [1]) will be
useful for complicated recipes with many ingredients and cooking actions.
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4.4 Recipe Tree Integration

To suggest the general way of cooking in a given recipe set, the generated general
tree should be almost equally close to each of the recipes. The general tree should
have the common characteristics of the given set. That is, ingredients or cooking
actions that appear often in the given set must be extracted into the general
tree. Moreover, sequences of cooking actions are also important for recipes and
should be stored in the general recipe. Therefore, when the system integrates
two trees, it counts how many recipes are integrated into each tree and generates
a new tree that is affected by each tree in proportion as its integration counts.

For each pair of recipe trees, edit distance is computed using the methods ex-
plained in Sections 4.2 and 4.3. The system integrates the closest pair of recipes
into one intermediate recipe tree. Let T and T’ be the two ordered trees to
be integrated, and w and w’ their weights. The edit distance d(T,T’) and a
set of edit operations transforming T into T’ are computed. Our system gen-
erates a new intermediate tree whose distance from T (resp., T”) is around
AT, THw' /(w+ w') (resp., d(T, T )w/(w + w')). Concretely, the system adopts
n insertion/deletion/substitution operations, where n is calculated as

n=d(T, T"w'/(w+w) xm

and m is the number of insertion/deletion/substitution operations. The order of
preference in this adoption is as follows:

— The deletion operation is adopted if
e the deleted node is an ingredient and the number of its occurrences in
the ten recipes is fewer than two.
e the deleted node is a “Mix” or “Other” action.
— The insertion operation is adopted if
e the inserted node is an ingredient and the number of occurrences in the
ten recipes is two or more.
e the inserted node is not a “Mix”, “Other”, or “Stop ongoing action”
action.

There is no order of preference for substitution operations. After such integration
procedures, the generated new tree T could have an action node as a leaf,
because the connected leaf node of an ingredient was removed. In such cases,
the system removes a sub-tree that has no ingredient as its leaf.

Then, T and T’ are removed from the current set of trees and 7" with the
weight (w + w’) is added to the set. The system repeats this integration and
finally obtains one general recipe tree Tyep,.

4.5 Characteristic Feature Extraction

The features of each recipe are extracted by comparing the recipe with the
general recipe Tye,,. Concretely, T is mapped with Tye, and deletion/insertion/
substitution operations corresponding to the characteristic features of T'.
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5 Experiments and Results

5.1 Recipe Data Set

The given data set was the top ten results of searching with a query “Nikujaga”
at COOKPAD [14]. The recipe IDs of obtained recipes were A) 1487670, B)
1485091, C) 1499546, D) 1519874, E) 1521946, F) 1524200, G) 1531094, H)
1531503, I) 1531751, and J) 1531880 (you can find these recipes at COOKPAD
by searching with these IDs as a query). Then, we converted them into unordered
recipe trees manually, this process is possible to automatized as we stated in
section 3.1.

5.2 Examples of Transformation to Ordered Trees

The system calculated the mapping score for all combinations of two of the ten
recipe trees. For each pair, the trees were transformed to ordered trees so that
these trees could be mapped with lower cost in accordance with the algorithm
explained in Section 4.2.

Fig. 3 (a) and (b) show examples of transformation from an unordered tree to
an ordered tree when mapping recipe D) to recipe G). As shown in these figures,
the trees on the right are closer to each other than the trees on the left. The
subtrees indicated by thick lines were reordered in this procedure.

,,,,,
-

n canned whole row in canned whole
:

ssssss

(a) Recipe transformation of D) (b) Recipe transformation of G)
for mapping with G) for mapping with D)

Fig. 3. Results of transforming from unordered to ordered tree

5.3 Node-to-node Mapping

The system calculated the mapping cost of editing distance. In this experiments,
we set Cyel ins, Csup1, and Cysypo as 7, 5, and 10, respectively. The mapping result
between recipes D) and G) is shown in Fig. 4. Since it has 12 deletion operations,
5 insertion operations, and 3 substitution operations, the mapping cost was 134.
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D deletion

(a) Mapping result from recipe D) to G) (b) Integrated recipe tree
from recipes D) and G)

Fig. 4. Mapping and integration results

Table 3. Edit distances of all combinations of two of ten recipes

A B C D E F G H I J Ave
A - 148 213 157 166 214 197 211 152 200 184.2
B 148 - 155 150 140 215 152 171 146 183 162.2
C 213 155 - 140 140 230 172 144 155 182 170.1
D 157 150 140 - 140 192 134 162 159 179 157.0
E 166 140 140 140 - 201 143 153 145 182 156.7
F 214 215 230 192 201 - 175 213 234 234 212.0
G 197 152 172 134 143 175 - 160 143 204 164.4
H 211 171 144 162 153 213 160 - 204 237 183.9
I 152 146 155 159 145 234 143 204 - 193 170.1
J 200 183 182 179 182 234 204 237 193 - 199.3

The mapping costs of all combinations of pairs of ten recipes are shown in Table
3. The first line on the right of this table shows the average distance from each
recipe to the others. In this line, recipe E) gets the closest average distance. This
means that recipe E) is the most general of these ten recipes.

5.4 Recipe Tree Integration

Since the pair of lowest cost was the combination of recipes D) and G), the
system integrated these recipes and generated one tree, in accordance with the
algorithm introduced in Section 4.4. Fig. 4 (b) shows the integrated recipe tree.
Because one leaf node is not an ingredient but an action, “cut,” the system
removed that node and the “add” node for that leaf, as indicated by the dotted
circle in Fig. 4 (b). When more than two or more nodes of the same type are
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Fig. 5. Mapping result of the general tree (on the left) with recipe D) (on the right)

directly connected and have no other branch, these nodes are combined into one
node. In this example, after removing the circled part, two “stew” nodes were
directly connected and the system removed one of them.

5.5 General Recipe Tree of Ten Recipes

The system repeated the integration until the ten recipe trees became one. The
finally integrated recipe tree is shown on the left side of Fig. 5. The edit distances
between the general tree and each recipe tree are shown in Table 4. The average
distance of the general tree is 133.7, while the average distance between each
recipe with the others is greater than 157, as shown in Table 3. This means that
the general recipe is much closer to all of the recipes than any one of them.

Table 4. The edit distances between the general and each recipe tree

A BCDEVFGH I J Ave
General 159 63 138 133 87 162 127 131 152 185 133.7

5.6 Characteristic Features of Each Recipe

The characteristic features of recipe D) were extracted by mapping it with the
general tree. The mapping result is shown in Fig. 5. According to the editing op-
eration of the mapping, the characteristic features of recipe D) can be extracted
as follows: (i) “MIRIN is added at the same timing with other seasoners,” (ii)
“place a small lid directly on the food,” (iii) “It uses HARUSAME and DASHI,”
(iv) “meat is fried without cutting,” and (v) “Potato is immersed in water af-
ter cutting.” (ii), (iii), and (v) were matched with manually extracted features.
However such manually extracted features as “use mince,” “use sesame oil,” and
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“use a small amount of sugar” could not be extracted because the recipe tree did
not include such data. On the other hand, (iv) was extracted incorrectly because
the action of cutting meat might just be omitted in the instruction.

We adopted the feature extraction method to all of the ten recipes respectively
and obtained 85 features in total. Then we compared them with the manually
extracted features that were introduced in Section 2. The number of consistences
between the manually extracted features and automatically extracted features,
and precisions and recalls of our method are shown in Table 5.

As shown in the table, the features of “Action order”, that was evaluated the
most important features by the annotators and is difficult to be extracted by
the previous researches, were extracted with 12% precision and 60% accuracy.
Since 84% of the incorrectly extracted features could also be agreed as “Action
order” feature when we recheck the recipe text, one of the reasons for these false
positive results could be that the annotators could not find these features. If so,
it means that the proposed methods has higher performance than human for
extracting such features. The features of “Action type”, which is also difficult
to be extracted by previous researches, could be extracted with 45% precision
and 45% recall. In total, our method succeeded in extracting 54% of manually
extracted features while the previous researches address only 37% of them.

We also conducted the experiment on the recipes of “Carbonara” and it
achieved precision of 47% with recall of 60%. Speaking about “Action order”
and “Uncommon action”, two of three features were successfully extracted.

Table 5. Feature type of recipe

Type Avg Manually Automatically # of Precision Recall
ranking extracted extracted consistence

Action order 1.8 5 (8%) 25 (29%) 3 12%  60%
Quantity of ingredient 21 6 (9%) 0 (0%) 0 % 0%
Reduced ingredient 2.1 6 (9%) 14 (16%) 6 43% 100%
Action type 2.4 11 (17%) 11 (13%) 5 45%  45%
Additional ingredient 2.5 28 (44%) 29 (34%) 17 59% 61%
Writing style 3.7 1(2%) 0 (0%) 0 - 0%
Cooking tool 3.9 7 (11%) 6 (7%) 3 50% 43%
Total 63 85 34 40%  54%

6 Discussions

Mapping Cost. In the proposed method, a cost of node-to-node mapping is
set according to their types so that ingredients or actions of the same broad
categories are treated as the same. However, such a difference is sometimes
very meaningful for finding characteristic features of a recipe. Moreover, not
all actions are equally important. For example, a washing action on a potato is
abbreviated very often, because it goes without saying that a potato should be
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washed. As future work, we will make the mapping cost of insertion, deletion,
and substitution operations depend on the name of the ingredient/action, so
that the mapping costs between similar types of ingredients or actions will be
lower than between dissimilar types.

Integration Weight. The system integrated two trees to one according to
their weight. The weight of a tree means the number of trees that are integrated
into the tree. However, not all parts of the tree are overlapped in all previous
integrations; some parts can be joined at the last integration. As future work,
we will give a weight not to the whole of a tree but to each node. The weight of
a node should be counted according to how many times the node is overlapped
in the previous integrations.

Applications. In this paper, we described a method for generating a general
recipe and for extracting characteristic features of a recipe. In a previous study,
we used a recipe tree as a scenario of a chef’s behavior for recognizing the
chef’s cooking in a cooking video [11]. Recipe-tree mapping can be used also for
recipe rewriting. For example, a simple recipe can be transformed into a detailed
recipe, because the system can obtain pairs of sentences in simple and detailed
descriptions by tree mapping.

Though we generated a general recipe from the top ten results in this paper,
it is possible to address more than ten results, if there are sufficient calculation
time, memory, and processors.

7 Conclusions

In this paper, we proposed a method for obtaining a general way to cook from a
set of multiple recipes and extracting characteristic features of each recipe. All
recipes were converted in advance to recipe trees. This process will be automa-
tized as we stated in section 3.1. The system calculated the edit distance of all
combinations of pairs of recipes and integrated the recipes of the closest pair
into one tree. In these processes, the system took into account the differences
in importance between the action types. As the result, our method succeeded
in extracting 54% of manually extracted features while the previous research
addressed 37% of them.
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