Combining Active Learning and Partial Annotation for Domain Adaptation of a Japanese Dependency Parser

Daniel FLANNERY¹ Shinsuke MORI²

¹Vitei Inc. (work at Kyoto University) ²Kyoto University

IWPT 2015, July 22nd

IWPT95 at Prague

- My first international presentation!!
 "Parsing Without Grammar" [Mori 95]
- This is the second!!

Statistical Parsing

Technology for finding the structure of natural language sentences

FFC 10

m-

- Performed after low-level tasks
 - word segmentation (ja, zh, ...)
 - part-of-speech tagging
- Parse trees useful for higher-level tasks
 - information extraction
 - machine translation
 - automatic summarization
 - etc.

Portability Problems

- Accuracy drop on a test in a different domain [Petrov 10]
- Need systems for specialized text (patents, medical, etc.)

Parser Overview

- EDA parser: Easily Domain Adaptable Parser [Flannery 12] http://plata.ar.media.kyoto-u.ac.jp/tool/EDA/home-e.html
 - 1st order Maximum Spanning Tree parsing [McDonald 05]
 - Allows partial annotation: only annotate some words in a sentence
- Use this flexibility for domain adaptation
 - Active learning: Select only informative examples for annotation
 - Goal: Reduce the amount of data needed to train a parser for a new type of text

Pointwise Estimation of Edge Scores

Choosing a head is an n-class classification problem

 $\sigma(\langle i, d_i \rangle) = p(d_i | \vec{w}, i), \quad (d_i \in [0, n] \land d_i \neq i)$

- Calculate edge scores independently
- Features
 - 1. Distance between dependent/head
 - 2. Surface forms/POS of dependent/head
 - 3. Surface/POS for 3 surrounding words
 - 4. No surrounding dependencies! (1st order)

Partial and Full Annotation

Our method can use a partially annotated corpus

- Only annotate some words with heads
- Pointwise estimation
- Cf. fully annotated corpus
 - Must annotate all words with heads

Pool-Based Active Learning [Settles 09]

- 1. Train classifier C from labeled training set D_L
- 2. Apply **C** to the unlabeled data set D_U and select **I**, the **n** most informative training examples
- 3. Ask oracle to label examples in I
- 4. Move training instances in I from D_U to D_L
- 5. Train a new classifier C' on D_L
- **6**. Repeat 2 to 5 until stopping condition is fulfilled

Query Strategies

- Criteria used to select training examples to annotate from the pool of unlabeled data
- Should allow for units smaller than full sentences
- Problems
 - Single-word annotations for a sentence are too difficult
 - Realistically, annotators must think about dependencies for some other words in the sentence (not all of them)
- Need to measure actual annotation time to confirm the query strategy's performance!

Tree Entropy [Hwa 04]

Criterion for selecting sentences to annotate with full parse trees

$$H(V) = -\sum_{v \in V} p(v) \lg(p(v))$$

- Models distribution of trees for a sentence
- ► V is the set of possible trees, p(v) is the probability of choosing a particular tree v
- In our case, change the unit from sentences to words and model the distribution of heads for a single word (head entropy)
 - use the edge score $p(d_i | \vec{w}, i)$ in place of p(v)
- Rank all words in the pool, and annotate those with the highest values (1-Stage Selection)

1-Stage Selection

Change the selection unit from sentences to words

- Need to model the distribution of heads for a single word
- Simple application of tree entropy to the word case
- Instead of probability for an entire tree p(v), use the edge score p(d_i|w, i) of a word-head pair given by a parsing model
- Rank all words by head entropy, and annotate those with the highest values
- ► The annotator must consider the overall sentence structure

2-Stage Selection

- 1. Rank sentences by summed head entropy
- 2. Rank words in each by head entropy
- 3. Annotate a fixed fraction
 - partial: annotate top r = 1/3 of words
 - full: annotate all words

Example

Pool of three sentences

sent.	words			
s1:	A/0.2	B/0.1	C/0.5	D/0.1
s2:	E/0.4	F/0.3	G/0.1	H/0.2
s3:	I/0.4	J/0.2	K/0.3	L/0.2

1-stage

▶ 2-stage, r = 1/2

sent.	sum	words			
s3:	1.1	I/0.4	J/0.2	K/0.3	L/0.2
s2:	1.0	E/0.4	F/0.3	G/0.1	H/0.2
s1:	0.9	A/0.2	B/0.2	C/0.5	D/0.1

Evaluation Settings

	ID	source	sent.	words /sent.	dep.
	EHJ-train	Dictionary examples	11,700	12.6	136,264
_	NKN-train	Newspaper articles	9,023	29.2	254,402
000	JNL-train	Journal abstracts	322	38.1	11,941
-	NPT-train	NTCIR patents	450	40.8	17,928
ч	NKN-test	Newspaper articles	1,002	29.0	28,035
tes	JNL-test	Journal abstracts	32	34.9	1,084
	NPT-test	NTCIR patents	50	45.5	2,225

- ► The initial model: EHJ
- ▶ The target domains: NKN, JNL, NPT
 - Manual annotation except for POS by KyTea
 - Some are publicly available [Mori 14].

http://plata.ar.media.kyoto-u.ac.jp/data/word-dep/home-e.html

Exp.1: Number of Annotations

- Reduction of the number of in-domain dependencies
- Simulation by selecting the gold standard dependency labels from the annotation pool
- Necessary but not sufficient condition for an effective strategy
- Simple baselines
 - random simply selects words randomly from the pool.
 - length strategy simply chooses words with the longest possible dependency length.
- One iteration:
 - 1. a batch of one hundred dependency annotations
 - 2. model retraining
 - 3. accuracy measurement

EHJ to NKN (Annotations)

- length and 2-stage-full work good for the first ten iterations but soon begin to falter.
- 2-stage-partial > 1-stage > others

Exp.2: Annotation Pool Size

- ▶ NKN annotation pool size \approx 21.3imes JNL, 14.2imes NPT
- ► The total number of dependencies selected is 3k (only 1.2% of NKN-train).
- 2-stage accuracy may suffer when a much larger fraction of the pool is selected.
 - Because the 2-stage strategy chooses some dependencies with lower entropy over competing ones with higher entropy from other sentences in the pool.
- Test a small pool case like JNL or NPT
 - First 12,165 dependencies as the pool

EHJ to NKN with a Small Pool

- After 17 rounds of annotation
 - 1-stage > 2-stage partial > 2-stage full
- > The relative performance is influenced by the pool size.
 - ▶ 1-stage is robust.
 - 2-stage partial can outperform it for a very large pool.

Exp.3: Time Required for Annotation

- Annotation time for a more realistic evaluation
 - Simulation experiments are still common in active learning
 - Increasing interest in measuring the true costs [Settles 08]
- Settings for annotation time measurement
 - 2-stage strategies
 - Initial model: EHJ-train plus NKN-train
 - Target domain: blog in BCCWJ (Balanced Corpus of Contemporary Written Japanese [Maekawa 08])
 - Pool size: 747 sentences
 - One iteration: 2k dependency annotations

Annotation Time Estimation

- A single annotator, 2-stage partial and full
 - one hour for partial \Rightarrow one hour for full \Rightarrow one hour for partial ...

method	0.25 [h]	0.5 [h]	0.75 [h]	1.0 [h]
partial	226	458	710	1056
full	141	402	756	1018

- After one hour the number of annotations was almost identical
 - For full the annotator was forced to check the annotation standard for subtle linguistic phenomena.
 - partial allows the annotator to delete the estimated heads.
- 1.4k dependencies per hour

EHJ to NKN (Time)

- Applied estimated time by the speeds measured in blog
- 2-stage partial > 2-stage full
- ► The difference becomes pronounced after 0.5[h].

Results for Additional Domains

	ID	source	sent.	words /sent.	dep /sent.
	EHJ-train	Dictionary examples	11,700	12.6	136,264
_	NKN-train	Newspaper articles	9,023	29.2	254,402
000	JNL-train	Journal abstracts	322	38.1	11,941
-	NPT-train	NTCIR patents	450	40.8	17,928
ىد	NKN-test	Newspaper articles	1,002	29.0	28,035
tes	JNL-test	Journal abstracts	32	34.9	1,084
•	NPT-test	NTCIR patents	50	45.5	2,225

Samll pool sizes

To JNL or NPT in (Annotations)

- 1-stage > 2-stage partial
 - The pool size is small.
 - 3k dependencies = 25.1% for JNL and 16.7% for NPT
- 2-stage partial > 2-stage full

To JNL or NPT (Time)

- Estimated annotation time
- 2-stage partial > 2-stage full
- ► The gap is the largest for NPT and the smallest for JNL.

Reduction in In-domain Data

domain	random	full	partial
NKN	3,000	_	1,300
JNL	3,000	1,800	900
NPT	2,700	-	1,500

- random: #annotations needed for the highest accuracy by the random baseline
- full, partial: #annotations needed for the full and partial versions of 2-stage to outperform it
- 2-stage full had mixed results.
- 2-stage partial offers large savings consistently.

Conclusion

A practical criterion for active learning of a dependency parser

- Entroy-based
- Semi-sentence-based

> 2-stage partial: the best when a large size of pool is available

- The corpora and the parser available at http://plata.ar.media.kyoto-u.ac.jp/home-e.html
- Future work
 - Combine with a 2nd or 3rd order parser

References

- Flannery, D., Miyao, Y., Neubig, G., and Mori, S.: A Pointwise Approach to Training Dependency Parsers from Partially Annotated Corpora, *Journal of Natural Language Processing*, Vol. 19, No. 3 (2012)
- Hwa, R.: Sample selection for statistical parsing, *Computational Linguistics*, Vol. 30, No. 3, pp. 253–276 (2004)
- Maekawa, K.: Balanced Corpus of Contemporary Written Japanese, in *Proceedings of the 6th Workshop on Asian Language Resources*, pp. 101–102 (2008)
- McDonald, R., Pereira, F., Ribarov, K., and Hajič, J.: Non-projective Dependency Parsing Using Spanning Tree Algorithms, in *Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing*, pp. 523–530 (2005)

- Mori, S. and Nagao, M.: Parsing Without Grammar, in Proceedings of the The Forth International Workshop on Parsing Technologies, pp. 174–185 (1995)
- Mori, S., Ogura, H., and Sasada, T.: A Japanese Word Dependency Corpus, in *Proceedings of the Nineth International Conference on Language Resources and Evaluation*, pp. 753–758 (2014)
- Petrov, S., Chang, P.-C., Ringgaard, M., and Alshawi, H.: Uptraining for Accurate Deterministic Question Parsing, in Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pp. 705–713 (2010)
- Settles, B., Craven, M., and Friedland, L.: Active Learning with Real Annotation Costs, in *NIPS Workshop on Cost-Sensitive Learning* (2008)

Settles, B.: Active Learning Literature Survey, Computer Sciences Technical Report 1648, University of Wisconsin–Madison (2009)