A Machine Learning Approach to Recipe Flow Construction

Shinsuke Mori, Tetsuro Sasada, Yoko Yamakata, Koichiro Yoshino

Kyoto University

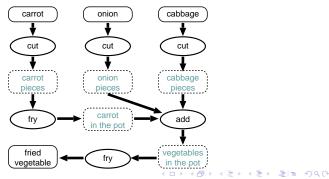
2012/08/28

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Table of Contents

Overview

Recipe Text Analysis


Evaluation

Conclusion

◆□▶ ◆□▶ ◆目▶ ◆目■ ●○○

What is Recipe?

- Describing the procedures for a dish
 - submitted to the Web
 - mainly written by house chefs
- One of the successful web contents
 - search, visualization, ...
- ▶ Recipe Flow [Momouchi 80, Hamada 00]

Recipe as a Text for Natural Language Processing

- Containing general NLP problems
 - Word identification or segmentation (WS)
 - Named entity recognition (NER)
 - Syntactic analysis (SA)
 - Predicate-argument structure (PAS) analysis
 - etc.
- ► Simple compared with newspaper articles, etc.
 - Few modalities
 - Simple in tense and aspect
 - Mainly indicative or imperative mood

Only one person (Chef)

Overall Design

- 1. Recipe text analysis
 - State of the art in NLP area
 - Domain adaptation to recipe texts

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回■ のへの

- 2. Flow construction
 - Not rule-based (hopefully)
 - Graph-based approach
- 3. Match with movies

Recipe Text Analysis

Execute the following steps in this order

- 1. WS: Word segmentation (Including stemming)
 - Only required for languages without whitespace (ja, zh)
 - ▶ Some canonicalization required even for en, fr, ...
- 2. NER: Named entity recognition
 - Food, Tool, Duration, Quantity, State, Action by the chef or foods
- 3. SA: Syntactic analysis
 - Grammatical relationship among NEs
- 4. PAS: Predicate-argument structure analysis
 - Semantic relationship among NEs

Output

Step 1. Word Segmentation (word identification)

- Input: a sentence 水400ccを鍋で煮立て、沸騰したら中華スープの 素を加えてよく溶かす。 (Heat 400 cc of water in a pot, and when it boils, add Chinese soup powder and dissolve it well.)
- Output: a word sequence

水|4-0-0|c-c|を|鍋|で|煮-立-て|、| 沸-騰|し|た-ら|中-華|ス-ー-プ|の|素|を| 加-え|て|よ-く|溶-か|す|。

where "|" and "-" mean existence and non-existence of a word boundary.

 \times No dictionary form of inflectional words is needed because our standard divides them into the stem and the ending.

Pointwise WS (KyTea) [Neubig 11]

Binary classification problem at each point between chars

Trainable from a partially annotated corpus ⇒Flexible corpus annotation! ⇒Easy to adapt to a specific domain!

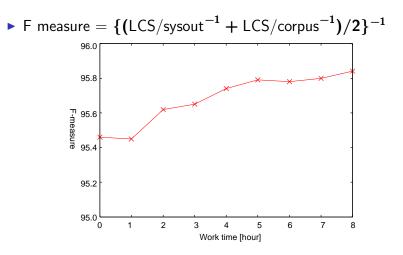
 A partially annotated corpus allows us to focus on special terms

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ ◇◇◇

Pointwise WS (KyTea) [Neubig 11]

Binary classification problem at each point between chars

SVM (Support Vector Machine)


▶ Features Char (type) 1-gram feature: -3/鍋(K), -2/で(H), -1/煮(K), 1/立(K), 2/て(H), 3/、(S) Char (type) 2-gram feature: -3/鍋で(KH), -2/で煮(HK), -1/煮立(KK), 1/立て(KH), 2/て、(HS) Char (type) 3-gram feature: -3/鍋で煮(KHK), -2/で煮立(HKK), -1/煮立て(KKH), 1/立て、(KHS)

Baseline and its Adaptation

- ▶ Baseline: BCCWJ, UniDic, etc.
- Adaptation: KWIC based partial annotation
 - 8 hours

A > C Onter://corpus.ar.media.kyoto-u.ac.jp/partial_corpus_annotation.html						^ Q+		
都分コーパス修正 2	2.0	0						
前の文脈		単語候補		後の文脈	よみ(リストに無い場合は右端のボック スへ, 不明確な場合は右端を空欄に)			
疲労、アレルギー、感染、角膜のこ		すり傷	ø	、角膜潰瘍、眼内の異物などが挙げ	○すりきず	○すりしょう	0	
って、皮膚が切れたり、裂けたり、	₫	すり傷	ø	、刺し傷を負うことがあります。BT	●すりきず	○すりしょう	0	
としてあざ、やけど、みみず腫れ、	Ø	すり傷	ø	などがよくみられます。BTこれらの	●すりきず	○すりしょう	0	
も尋ねられます。BT医師は切り傷や		すり傷		などの身体的外傷に注意して診察し	○すりきず	●すりしょう	0	
りますが、とりわけ泥まみれの深い		すり傷		や、皮下深くまで汚染しやすい刺し	○すりきず	●すりしょう	0	

Result

- WS improves as the work time increases
- ▶ More work required (about 98% in the general domain)

Step 2. Named Entity Recognition (NER)

Named entity

- Word sequences corresponding to objects and actions in the real world
- Highly domain dependent
- ► Named entity types for recipes: Food, Tool, Duration, Quantity, State, Action by the chef, Action by foods <u>水_F 400 c c q</u> を 鍋_T で <u>煮立て_{Ac}、 沸騰し_{Af} たら</u> <u>中華 スープ の 素_F を 加え_{Ac} て よく 溶か_{Ac} す。</u>

 $\frac{\text{Heat}_{Ac}}{\text{add Chinese soup powder}_{F}} \text{ in a } \underbrace{\text{pot}_{T}}_{\text{dissolve}_{Ac}}, \text{ and when it } \underbrace{\text{boils}_{Af}}_{\text{dissolve}_{Ac}}, \text{ it well.}$

Pointwise NER

Trainable from a partially annotated corpus ⇒Flexible corpus annotation! ⇒Easy to adapt to a specific domain!

- 1. BIO2 representation (one NE tag for a word, with **O**ther) 水/B-F **4**00/B-Q cc/I-Q を/O鍋/BT で/O 煮立て/B-Ac 、/O 沸騰/B-Af し/I-Af たら/O
- 2. Train pointwise classifier (KyTea) with logistic regression from a tagged data including partially annotated corpus
 - No partially annotated corpus this time
 - ► Cf. A CRF requires a fully annotated sentences.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ ◇◇◇

Pointwise NER (cont'd)

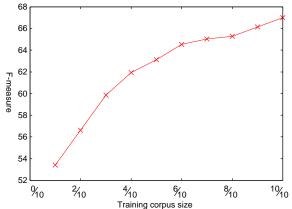
3. Output all the possible pairs of tag and probability to fill the Viterbi table:

	w					
P(y w)	水	400	сс	を	• • •	
F-B	0.62	0.00	0.00	0.00	• • •	
F-I	0.37	0.00	0.00	0.00	•••	
Q-B	0.00	0.82	0.01	0.00	•••	
y Q-I	0.00	0.17	0.99	0.00	• • •	
T-B	0.00	0.00	0.00	0.00	• • •	
÷	÷	÷	÷	÷	·	
0	0.01	0.01	0.00	1.00	• • •	

- 4. Search for the best sequence satisfying the constraints
 - Ex. "F-I Q-I" is invalid
 - ► In future work we change this part into CRFs

Baseline and its Adaptation

- ▶ Baseline: 1/10 of *Meet-potato* recipe text (24 sent.)
- Annotation: from 1/10 to 10/10 (about 5 hours, 242 sent.) Not randomly selected recipes ... (bad setting)

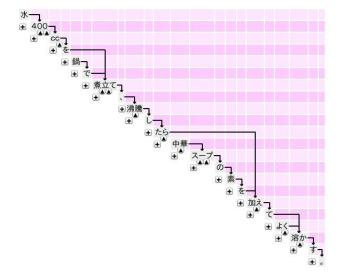


Meet potato

▲ロト ▲帰ト ▲ヨト ▲ヨト ヨヨ のの⊙

Result

F measure


 Very low F measure compared with the general domain (around 80%)

₹ = 1 = 10 < 0

► NER improves rapidly as the work time increases

Step 3. Syntactic Analysis

► Dependency among the words (and NEs) in a sentence

Pointwise SA

▶ Pointwise MST (EDA) [Flannery 11]

Trainable from a partially annotated corpus ⇒Flexible corpus annotation! ⇒Easy to adapt to a specific domain!

1. Estimate dependency scores of all the possible pairs in a sentence

 $\sigma(\langle {\sf i}, {\sf d}_{\sf i} \rangle, {\sf \vec{w}}),$ where ${\sf w}_{\sf i}$ depends on ${\sf w}_{{\sf d}_{\sf i}}$

▲ロト ▲帰ト ▲ヨト ▲ヨト ヨヨ のの⊙

2. Select the Spanning Tree which Maximizes the total score (MST)

$$\hat{\vec{d}} = \operatorname*{argmax}_{\vec{d} \in \mathsf{D}} \sum_{i=1}^{\mathsf{n}} \sigma(\langle i, \mathsf{d}_i \rangle, \vec{\mathsf{w}})$$

Pointwise SA (cont'd)

Features for dependency score of a word pair

vyster dyster dyster

- F1 The distance between a dependent word w_i and its candidate head w_{d_i} .
- F2 The surface forms of w_i and w_{d_i} .
- F3 The parts-of-speech of w_i and w_{d_i} .
- F4 The surface forms of up to three words to the left of w_i and w_{d_i} .
- F5 The surface forms of up to three words to the right of w_i and w_{d_i} .
- F6 The parts-of-speech of the words selected for F4.
- F7 The parts-of-speech of the words selected for F5.

Baseline and its Adaptation

- Baseline: about 20k sent.
 - EHJ (Dictionary example sentences): 11,700 sentences, 145,925 words
 - NKN (*Nikkei* newspaper articles): 9,023 sentences, 263,425 words
- Adaptation: Annotate new pairs of a noun and a postposition with the dependency
 - 1. Find a pair of a noun and a postposition not appearing in the traing corpus
 - 2. Annotate the dependencies from the noun to its head verb obj. **boil** cc \rightarrow を \rightarrow (... 煮立て)

3. 8 hours

Result

Accuracy 93.2 93.0 Accuracy 92.6 92.6 92.4 92.2 0 1 2 3 5 6 7 8 Work time [hour]

- Low accuracy compared with the in-domain data (96.83%)
- ► SA improves slowly as the work time increases

Step 4. Predicate-argument structure analysis

- Rule-based (as far as it is)
 - Should be based on a machine learning
 - Have to guess zero-pronouns
- Correspond to the smallest units in the recipe flow 1. <u>煮立て</u>_{Ac} (Chef, <u>水</u>_F <u>40</u>0 cc_Q $\overset{obj.}{\mathcal{E}}$, 鍋_T $\overset{obj.}{\mathcal{T}}$) 400 cc of water (obi. pot (in) 2. 沸騰-し_{Af} (Food) 3. $\underline{\underline{mad}}_{Ac}$ (Chef, $\underline{\underline{pad}}_{Ac}$ \underline{pad}_{Ac} (Chef, \underline{pac}_{Ac} \underline{pac}_{Ac} \underline{nc}_{Ac} \underline{nc}_{Ac} \underline{nc}_{Ac} \underline{nc}_{Ac} \underline{nc}_{Ac} Chinese add oup powder dissolve 4. 溶か-す_{Ac} (Chef, 中華 スープ の 素_F を) ◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ ◇◇◇

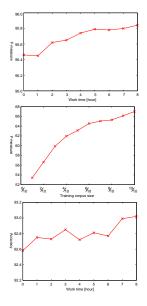
Experimental Setting

1. Test data: randomly selected 100 recipes in Japanese

#recipes	#sent .	#words	#NEs
100	724	13,150	3,797

2. Training data

- ► WS: (BCCWJ + etc.) + partial annotation
- ▶ NER: *Meet-potato* 1/10 + 9/10 (bad setting ...)


- ► SA: (EHJ + NKN) + partial annotation
- PAS: on going
- Recipe Flow: on going

Evaluation 1: Each Step (summary)

Step 1. WS: Word segmentation
 Baseline: 95.46%
 ↓ (8 hours)
 Adaptation: 95.84%

Step 2. NER: Named entity recognition
Baseline: 53.42%
↓ (5 hours)
Annotation: 67.02%

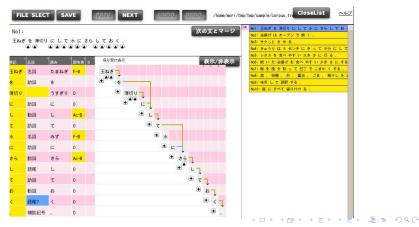
Step 3. SA: Syntactic analysis
Baseline: 92.58%
↓ (8 hours)
Adaptation: 93.02%

◆□ > ◆□ > ◆三 > ◆三 > 三日 の Q @ >

Evaluation 2: Overall

- 1. Predicate-argument structure
 - PA pair as an evaluation unit
 - ▶ 〈煮立て, obj.:水-400-cc〉 〈boil, obj.:400 cc of water〉
 - ▶ 〈煮立て,で:鍋 〉 〈boil, by:pot〉
 - F measure Baseline 42.01%
 ↓ (8 + 5 + 8 hours) 28.0% error elimination! Adaptation 58.27%
 - F measure is still low
 - ▶ Because of NER? (67.02% ≪ 90%)
 - More annotation required (21 hours $\ll \infty$)

Strict criterion (word boundary incl., etc.)


2. Flow Accuracy

Conclusion

- Recipe Text Analysis
 - Word segmentation, Named entity recognition
 - ► Syntactic analysis, Predicate-argument structure analysis
- A Machine Learning Approach
 - Systematic domain adaptation
 - Easily trainable to achieve the required accuracy
- Future work
 - Improvement³
 - ▶ Recipe flow construction (search, visualization, ...)
 - Matching with movies to understand the real world
 - Spoken dialog system to help a chef (Smart kitchen)
 - ► equipped with the recipe flow as the database

PNAT: Pointwise NLP Annotation Tool

- Word segmentation
- Part-of-speech tag
- Pronunciation
- Named entity tag
- Syntactic structure

References

- Flannery, D., Miyao, Y., Neubig, G., and Mori, S.: Training Dependency Parsers from Partially Annotated Corpora, in *Proceedings of the Fifth International Joint Conference on Natural Language Processing* (2011)
- Hamada, R., Ide, I., Sakai, S., and Tanaka, H.: Structural Analysis of Cooking Preparation Steps in Japanese, in Proceedings of the fifth international workshop on Information retrieval with Asian languages, No. 8 in IRAL '00, pp. 157–164 (2000)
- Momouchi, Y.: Control Structures for Actions in Procedural Texts and PT-Chart, in Proceedings of the Eighth International Conference on Computational Linguistics, pp. 108–114 (1980)

Neubig, G., Nakata, Y., and Mori, S.: Pointwise Prediction for Robust, Adaptable Japanese Morphological Analysis, in *Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics* (2011)

▲ロト ▲帰ト ▲ヨト ▲ヨト ヨヨ のの⊙