
Vision-Language Interpreter for Robot Task Planning

Keisuke Shirai1∗, Cristian C. Beltran-Hernandez2, Masashi Hamaya2, Atsushi Hashimoto2,
Shohei Tanaka2, Kento Kawaharazuka3, Kazutoshi Tanaka2, Yoshitaka Ushiku2, Shinsuke Mori4

Abstract— Large language models (LLMs) are accelerating
the development of language-guided robot planners. Meanwhile,
symbolic planners offer the advantage of interpretability. This
paper proposes a new task that bridges these two trends,
namely, multimodal planning problem specification. The aim is
to generate a problem description (PD), a machine-readable
file used by the planners to find a plan. By generating PDs
from language instruction and scene observation, we can drive
symbolic planners in a language-guided framework. We propose
a Vision-Language Interpreter (ViLaIn), a new framework that
generates PDs using state-of-the-art LLM and vision-language
models. ViLaIn can refine generated PDs via error message
feedback from the symbolic planner. Our aim is to answer the
question: How accurately can ViLaIn and the symbolic planner
generate valid robot plans? To evaluate ViLaIn, we introduce
a novel dataset called the problem description generation
(ProDG) dataset. The framework is evaluated with four new
evaluation metrics. Experimental results show that ViLaIn can
generate syntactically correct problems with more than 99%
accuracy and valid plans with more than 58% accuracy. Our
code and dataset are available at https://github.com/
omron-sinicx/ViLaIn.

I. INTRODUCTION

Natural language is a prospective interface for non-experts
to instruct robots intuitively [1]–[3]. Earlier studies have
used recurrent neural networks [4], [5] to map abstract
linguistic instructions to representations for robots [1], [6],
[7]. Here, the linguistic instructions represent desired goal
conditions. More recent studies use large language models
(LLMs) [8]–[10] to directly generate robot plans from the
instructions [11]–[14]. These language-guided planners uti-
lize few-shot prompting to solve tasks without training [15].
The plans are a sequence of discrete symbolic actions (e.g.,
pick(a) and place(a, b)) that complete the task. We
aim to strengthen the language-guided planners in terms
of the improvement of interpretability.1 Interpretability is
essential to gain the trust of the user and provide insights into
the robot’s decision-making process [16]. For example, the

1Keisuke Shirai and Shinsuke Mori are with Kyoto University,
Kyoto 606-8501, Japan (email: [shirai.keisuke.64x@st.kyoto-
u.ac.jp,forest@i.kyoto-u.ac.jp])

2Cristian C. Beltran-Hernandez, Masashi Hamaya, Atsushi Hashimoto,
Shohei Tanaka, Kazutoshi Tanaka, Yoshitaka Ushiku are with the OMRON
SINIC X Corporation, Tokyo 113-0033, Japan (email: [cristian.beltran,
masashi.hamaya, atsushi.hashimoto, shohei.tanaka, kazutoshi.tanaka, yoshi-
taka.ushiku]@sinicx.com)

3Kento Kawaharazuka is with the University of Tokyo, 73-1 Hongo,
Bunkyo-ku, Tokyo, 113-8656, Japan (email: kawaharazuka@jsk.t.u-
tokyo.ac.jp)

∗Work was done while the first author was an intern at OMRON SINIC
X Corporation.

1We define interpretability as a mechanism to provide insights into the
inner workings of the system.

“Slice the carrot and

place it in the bowl.”

Scene Observation

<<problem.pddl>>
1. objects
2. initial state
3. goals

Linguistic Instruction

Domain Knowledge
- Object characteristics
- Input/output examples

Problem Description

LLM

Vision-Language

Interpreter
 (ViLaIn)

Valid
plan

Err. Msg.

re-prompting

or

Textual Scene
description

In
pu

t
O

ut
pu

t
P

ro
po

se
d

Fr
am

ew
or

k V&L models

Sy
m

b
o

lic

Pl
an

n
er

“Slice the carrot and

place it in the bowl.”

Scene Observation

<<problem.pddl>>
1. objects
2. initial state
3. goal

Linguistic Instruction

Domain Knowledge
- Object characteristics
- Input/output examples

Problem Description

LLM

Vision-Language

Interpreter
 (ViLaIn)

Valid
Plan

Err. Msg.

Re-Prompting

or

Textual Scene
Description

In
pu

t
O

ut
pu

t
P

ro
po

se
d

Fr
am

ew
or

k V&L Models

Sy
m

b
o

lic

Pl
an

n
er

Fig. 1. Overview of our approach. The vision-language interpreter (ViLaIn)
generates a problem description from a linguistic instruction and scene
observation. The symbolic planner finds an optimal plan from the generated
problem description.

identification of failure causes through interpretation leads to
continuous improvement of overall performance.

Robot task planning has traditionally been solved using
symbolic planning [17]. Modern symbolic planners use the
Planning Domain Definition Language (PDDL) to describe
planning problems. In PDDL, a planning problem is defined
in two parts: the domain that defines the state of variables
and actions, and a problem description (PD) that defines the
objects of interest, their initial state, and the desired goal
state [18], [19]. The domain and problem are inputs to the
planner to find an optimal plan, a sequence of symbolic
actions.

Symbolic planners offer several benefits. The domain
and problem descriptions are human-readable, especially
when variable names are chosen intuitively. Moreover, the
obtained plans are guaranteed to be logically correct. Con-
sidering these advantages, combining symbolic planning and
language-guided planning is a promising research direction
to realize interpretable robots. To that end, we proposed
generating the PDs from natural language instructions. Since
the linguistic instructions only represent the goal conditions,

https://github.com/omron-sinicx/ViLaIn
https://github.com/omron-sinicx/ViLaIn

TABLE I
DIFFERENCES BETWEEN PREVIOUS STUDIES AND OURS

Approach Input other than Outputlinguistic instruction
Huang et al. [11] — Symbolic action
Raman et al. [12] — Symbolic action
Text2Motion [13] PDDL scene desc. Symbolic action
SayCan [23] Image Pre-defined skill
RT-2 [24] Image Low-level action
ProgPrompt [14] — Program code
Code as Policies [3] Image Program code
LLM+P [25] Linguistic scene desc. Problem desc.
ViLaIn (ours) Image Problem desc.

additional information about the environment is required to
generate the initial state (e.g., an image representing the
current environment). We refer to this additional information
as scene observations.

We tackle the multimodal planning problem specification
task, a new task for transforming linguistic instructions and
scene observations into logically and semantically correct
PDs. The PDs have to be executable by the symbolic
planners. This paper investigates how accurately we can
generate such PDs with a state-of-the-art LLM [9] and
vision-language model [20], [21] without additional training.
We propose a Vision-Language Interpreter (ViLaIn), a new
framework to solve the PD generation task, illustrated in
Fig. 1. ViLaIn consists of three modules that generate
each part of the PDs. The complete PD is assembled by
concatenating these parts. Furthermore, ViLaIn can refine
the generated PDs via error feedback from the symbolic
planner. The planner uses a pair of the generated PD and the
domain description to find a plan. We use the state-of-the-art
symbolic planner called Fast Downward [22] throughout this
paper.

To evaluate ViLaIn, we introduce a novel dataset called the
problem description generation (ProDG) dataset. The ProDG
dataset consists of linguistic instructions, scene observations,
and domain and problem descriptions. The descriptions are
written in PDDL [19]. This dataset covers three domains:
cooking as a practical robot domain, and the blocks world
and the tower of Hanoi as classical planning domains. We
propose four new evaluation metrics to evaluate ViLaIn from
multiple perspectives.

The main contributions of this work are three-fold:

• Multimodal planning problem specification, a new task
to bridge the language-guided planning and symbolic
planners with scene observations.

• Vision-Language Interpreter (ViLaIn), a new frame-
work consisting of a state-of-the-art LLM and vision-
language model. ViLaIn can refine erroneous PDs by
using error messages from the symbolic planner.

• The problem description generation (ProDG) dataset,
a new dataset that covers three domains: the cooking
domain, the blocks world, and the tower of Hanoi. The
dataset comes with new metrics that evaluate ViLaIn
from multiple perspectives.

II. RELATED WORK

This section describes previous work on language-guided
planning, symbolic planning, and scene recognition in com-
puter vision. Table I summarizes the difference between
several studies mentioned here and ViLaIn.

A. Planning from Natural Language

Task planning from natural language has been actively
studied [11], [20], [23]. Converting linguistic instructions
into symbolic actions via neural networks is a typical ap-
proach [7], [26]. More recent studies [11]–[14] use LLMs
and directly generate plans with few-shot prompting [15].
However, these language-guided planners have two issues.
First, their systems hide the inner workings by generating
plans end-to-end. Second, the obtained plans are not guaran-
teed to be logically correct. ViLaIn resolves these issues by
converting instructions into human-readable PDs and driving
symbolic planners to find plans with the generated PDs. A
recent study uses LLMs to convert linguistic instructions
and images into programs to complete robot tasks [3]. PDs
describe tasks more specifically, and their logical correctness
is automatically verifiable. In other words, ViLaIn has the
potential to deliver validated machine-readable information
to other language-guided planners as an auxiliary input.

More recent studies have used LLMs to convert natural
language inputs to PDs [25], [27]. However, one study [25]
assumes that scene descriptions (the objects and initial state)
are provided in natural language, which is not practical
for real applications. Another work [27] focuses on only
generating the goal specifications. Contrary to these studies,
ViLaIn uses images for scene descriptions and generates the
whole PDs, including the objects and initial states.

B. Symbolic Planning with PDDL

Symbolic planning (automated planning) has been used
to solve robotic tasks [17]. Symbolic planners [22], [28] use
domain and problem descriptions to find plans, which are se-
quences of (symbolic) actions that alter the environment from
its initial state to a goal state. The descriptions are written in
formal languages, such as PDDL [19] and PDDLStream [29].
Robots execute low-level actions based on the found high-
level plans of PDDL [30]–[32]. This framework enables
robots to solve various problems but assumes a preparation
of corresponding PD for each problem. ViLaIn is designed
to collaborate with those PDDL-based planning frameworks
by translating linguistic instructions into PDs.

C. Scene Recognition for Planning Problem Specification

The generation of the objects and initial state in PD is
related to research in computer vision. This section briefly
overviews such previous work.

The object part of PDs lists objects required for the task.
This work generates the objects from scene observations.
This can be viewed as object detection in computer vision.
Classical object detectors [33], [34] have been developed
focusing on a fixed number of classes (e.g., person and dog).
However, our task handles objects not included in the classes.

Hence, we use an open-vocabulary object detector [20], [35].
These detectors have recently gained attention because they
can detect arbitrary objects using text queries.

The initial state represents object relationships and their
states. Detecting such scene descriptions from images has
been addressed on visual relationship detection [36], [37] or
scene graph generation [38], [39]. Previous work trained a
model with PDDL predicates and demonstrated it in real
robot domains [40]. We use a state-of-the-art LLM and
vision-language model to generate the initial state.

III. PROBLEM STATEMENT

We focus on multimodal planning problem specification,
a new task for bridging language-guided planning and sym-
bolic planning. The input is a quadruple (L, S,DD, DK); a
linguistic instruction L, a scene observation S, a domain
description DD, and domain knowledge DK . L is a se-
quence of words describing the task. S is an RGB image
describing the initial state of the environment. DD defines
parts common to all problems: object types (e.g., location
and tool), predicates (e.g., at and clear), and symbolic
actions (e.g., slice and pick). DK supports DD by
providing more specific information on each problem, such
as object characteristics (e.g., the cutting board is round,
the counter is black) and actual input/output examples. Note
that the examples in DK use the object types and predicates
defined in DD.

The output is a PD P consisting of (O, I,G): the
objects O, the initial state I , and the goal specifica-
tion G. O consists of objects required for the task com-
pletion (e.g., carrot and knife). I consists of a set of
propositions that represent the initial state of the envi-
ronment (e.g., (at carrot counter)). A proposition
is formed by providing a predicate with arguments. For
example, providing a predicate (at ?a1 ?a2) with (a1,
a2) = (carrot, cutting board) forms a proposition
(at carrot cutting board) meaning ”the carrot is
at the cutting board.” G consists of a set of propo-
sitions that represent the desired goal condition of the
environment. For example, (and (at carrot bowl)
(is-sliced carrot)) represents the goal condition
that ”the carrot should be sliced and should be at the bowl.”
P and DD are written in PDDL [19], following previous
work [25], [27]. We refer to O, I , or G with PDDL (e.g., the
PDDL objects). The goal of this task is obtaining a function
M : (L, S,DD, DK) → (O, I,G). P must be machine-
readable and executable by the symbolic planner.

IV. VISION-LANGUAGE INTERPRETER

ViLaIn consists of three modules: the object estimator, the
initial state estimator, and the goal estimator. We describe
these modules in this section.

A. Object Estimator

The PDDL objects O list objects of interest in the scene
observations S. However, the observed objects vary greatly
from domain to domain. Further, it must recognize various

(:objects
 carrot - vegetable
 bowl - location
 cutting_board - location
 counter - location
 knife - tool
 robot1 - robot
 robot2 - robot)

PDDL objects

Robot

Knife

Robot

Bowl Carrot

Counter

Cutting board

Rule-based
formatting

Domain knowledge DK

carrot, white_bowl,
round_cutting_board,

kitchen_knife, …

Open-Vocabulary Object Detector

Visual Observation V

(:objects
 carrot - vegetable
 bowl - location
 cutting_board - location
 counter - location
 knife - tool
 robot1 - robot
 robot2 - robot)

PDDL Objects O

Robot

Knife

Robot

Bowl Carrot

Counter

Cutting board

Rule-Based
Formatting

Domain Knowledge DK

carrot, white_bowl,
round_cutting_board,

kitchen_knife, …

Open-Vocabulary Object Detector

Scene Observation S

Fig. 2. The open-vocabulary object detector detects objects from the
observation. The text query is provided by the domain knowledge. The
detected objects are converted into a PDDL format in a rule-based way.

objects that classical object detectors cannot handle. For
this reason, we use Grounding-DINO [20], a state-of-the-art
open-vocabulary object detector. Fig. 2 illustrates the estima-
tor. We assume that the list of objects for the task is known.
The object list can be used as the text query. However, we
found from preliminary experiments that simply using the
object list fails to detect several objects. To address this
issue, we elaborate the query using the domain knowledge
(e.g., ”cutting board” → ”round cutting board” and ”knife”
→ ”kitchen knife”).2 In our setting, these elaborated queries
are included in the domain knowledge DK . The detected
objects are converted into a PDDL format by rules.

B. Initial State Estimator

The PDDL initial states I must specify the initial state
of the environment using propositions. Here, different pred-
icates from DD should be used for different domains to
represent the propositions. In addition, omitting a single
proposition could cause an invalid PD by making reaching
the goal from the initial state impossible. We implement the
initial state estimator with a combination of an LLM and
image captioning model. Fig. 3 shows the estimator. We use
BLIP-2 [21] as the captioning model and GPT-4 [9] as the
LLM. Given the objects’ bounding boxes, BLIP-2 generates
captions for each object with a prompt of ”Q: what does
this object describe? A: .” GPT-4 generates the PDDL initial
state I from the bounding boxes and captions. GPT-4 uses
few-shot prompting and leverages input/output examples in
DD to derive available predicates.

C. Goal Estimator

The PDDL goal specifications G must represent the de-
sired goal conditions specified by the linguistic instructions

2In this work, we assume that the domain knowledge is created by
humans, and we leave the automatic generation of it to future work.

bowl:
 [61, 349, 205, 477]
cutting_board:
 [202, 169, 332, 229]
…

(:init
 (available carrot)
 (is-whole carrot)
 (is-workspace
 cutting_board)
 (free a_bot)
 (carry b_bot knife)
 (can-cut knife)
 (at carrot counter))

Large
Language
Model

Captioning Model

PDDL Initial State I

Input/Output
Examples

Domain Knowledge DK

“it is a bowl.”

“it is a wooden
cutting board.”

Predicted
PDDL

Objects O

￼

Fig. 3. The captioning model generates captions for each object. The LLM
generates the PDDL initial state from the bounding boxes and the captions
using few-shot prompting.

L. Generating G requires O to refer to the object list and I to
consider the relationships of the objects. We implement the
goal estimator with an LLM, following previous work [13],
[27]. Fig. 4 shows the estimator. We use GPT-4 to generate
G from L, O, and I . Similarly to Section IV-B, GPT-4 uses
few-shot prompting with DK .

D. Corrective Re-Prompting

Generated PDs are used by the planner to find plans.
The planning might fail in the following two cases. One is
when the PDs are syntactically incorrect. Generating propo-
sitions with undefined objects in O or undefined predicates
in DD results in such PDs (e.g., create (at cucumber
counter), but cucumber is not listed in O). The other
is when the generated O is unreachable from the generated
I . Contradictory propositions create such a PD (e.g., both
of a proposition (on red block blue block) and the
opposite one (on blue block red block) exist in I).
In both cases, the planner stops planning and returns an error
message, a clue to refine the erroneous parts. It is ideal if the
system automatically refines the PDs via the error messages.
ViLaIn has such a mechanism, and we describe it in this
section.

When the planning fails, ViLaIn creates a prompt and
re-prompts GPT-4 to refine the PD. We refer to this tech-
nique as Corrective Re-prompting (CR), following previous
work [12]. Fig. 5 shows ViLaIn with CR. The prompt
consists of input/output examples in DK , the current input
(L and S), the generated problem P , and the error message.

Chain-of-Thought prompting: We use Chain-of-
thought (CoT) prompting [41]–[43] to further strengthen CR.
CoT is a technique for solving complex reasoning tasks by
LLMs. CoT introduces an intermediate reasoning step before
generating the final output. With CoT, GPT-4 generates an

Large
Language
Model

PDDL Goal Specification GDomain Knowledge DK

Input/Output
Examples

“Slice the carrot and
place it in the bowl.”

Linguistic Instruction L
Predicted
PDDL Objects O

Predicted
PDDL Initial States I

 (:goal (and
 (at carrot bowl)
 (is-sliced carrot)
))

Fig. 4. The LLM directly generates the PDDL goal specification from the
instruction and the PDDL objects and initial state using few-shot prompting.

ViLaIn <<problem.pddl>>

Input

Valid
Plan

Error Message

Generate Symbolic
Planner

Re-Prompt Return Error

Find Plan

Fig. 5. ViLaIn can refine the generated problem description via an error
message from the planner.

explanation of the error message with a prompt template of
“What part of the PDDL problem do you think is causing
this error?.” The generated explanation is then added to the
input prompt, and GPT-4 generates the refined problem based
on it. CR with CoT can be repeated as often as necessary
until the planner returns error messages. In the rest of this
paper, ViLaIn generates the PDs using CR with CoT unless
otherwise specified. Note that ViLaIn performs CR with CoT
only if the planner returns an error message.

V. DATASET

The evaluation of ViLaIn requires a dataset with linguistic
instructions, scene observations, and PDDL domains and
problems. However, to our knowledge, no such dataset has
been proposed. To this end, we created the ProDG dataset.
The ProDG dataset consists of three domains: cooking, the
blocks world (Blocksworld), and the tower of Hanoi (Hanoi).

Cooking is a simplified task of making a salad. Planning is
simpler than the other two domains because it only considers
slicing vegetables and placing them in the bowl. Cooking
actions are supposed to be performed by two robot arms
installed on both sides of the environment. The left and right
robot arms are named a bot and b bot, respectively, in
O. This domain handles a greater variety of objects than the
other domains. G represents the vegetable state and location.

Blocksworld is a classical planning domain [44]. Fewer
types of objects than the cooking appear, but a longer horizon
planning is required. Seven colored blocks without duplicates
are used for each problem. A robot arm does not hold
anything at first. G specifies the relationships of the blocks.

Hanoi is a classical planning domain [45]. Similarly to
Blocksworld, a longer horizon planning with fewer types
of objects than the cooking domain is required. Ten disks
with six colors and three pegs are used. Disks of the same

TABLE II
DEFINED OBJECT TYPES, PREDICATES, AND ACTIONS IN THE DOMAIN DESCRIPTIONS

Domain Object types Predicates Actions

Cooking vegetable, location, available, is-whole, is-sliced, free, pick, place, slicetool, robot carry, can-cut, at, at-workspace
Blocksworld block, robot on, ontable, clear, handempty, handfull, holding pick-up, put-down, stack, unstack
Hanoi disk, peg clear, on, smaller, move move

Cooking Blocksworld Hanoi

“Slice the cucumber and
place the sliced cucumbers
in a bowl.”

“Create two stacks of blocks:
yellow over green over pink,
and red over purple.”

“Move all disks to the
rightmost peg while
keeping a rule that
larger disks are below.”

Fig. 6. Examples of scene observations and linguistic instructions.

color are named by the number in order of increasing width
(e.g., blue disk1 and blue disk2). The three pegs are
named by the number from left to right (e.g., peg1, peg2,
and peg3). I and G specify the positions of the disks.
Completing this task requires correctly recognizing the disk
sizes since L only instructs the rule of the task, “larger disks
are below,” but mentions no concrete objects.

Each domain has one domain description and ten PDs.
Table II shows object types, predicates, and actions in
the domain descriptions. Each problem has one linguistic
instruction and one scene observation. Fig. 6 shows examples
of linguistic instructions L and scene observations S. For
the Hanoi domain, L is identical through all problems. This
aims to investigate whether ViLaIn can generate different
G based on O and I . The descriptions for the cooking
domain were created from scratch, while those for the
Blocksworld and Hanoi domains were created based on the
PDDL files in pddlgym [46]. We confirmed that all the
created PDs are syntactically correct and have solutions using
Fast Downward [22] and VAL, a plan validation software.3

A. Evaluation Metrics

In PD generation, previously proposed metrics roughly
calculate the planning success rate or are domain-specific
ones [25], [27]. It would be ideal to have metrics that evaluate
PDs from multiple perspectives regardless of domain. To
this end, we introduce a new suite of metrics: Rsyntax and
Rplan for logical correctness and Rpart and Rall for semantic
correctness. We describe these metrics below.

Rsyntax: PDs must be syntactically correct. Rsyntax cal-
culates the ratio of such PDs. A PD is considered to be
syntactically correct if VAL returns no warnings and exit
codes for a pair of the domain and the generated PD.

Rplan: Even if the PDs are syntactically correct, they
might not have valid plans due to incorrect objects in O
and incorrect or contradictory propositions in I and G. Rplan

3https://github.com/KCL-Planning/VAL

TABLE III
PERFORMANCE ON THE PRODG DATASET

Domain Rsyntax Rplan
Rpart RallO I G

Cooking 0.99 0.99 1.00 0.93 0.93 0.71
Blocksworld 0.99 0.94 0.98 0.79 0.89 0.36
Hanoi 1.00 0.58 0.89 0.46 0.33 0.12

calculates the ratio of the PDs having valid plans. The plans
are obtained using Fast Downward [22]. A plan is considered
to be valid if VAL returns no error messages.

Rpart and Rall: The above two metrics ignore whether
the PDs are written about our intended tasks. For example,
the PD might be about an unintended task while it is
syntactically correct and has a valid plan. Rpart evaluates
how close the generated problems are to the ground truth
ones. Rpart calculates the recall of the problem parts between
the ground truth and generated ones. Rpart is independently
computed for O, I , and G. The recall of object labels is
calculated for O, while the recall of propositions is computed
for I and G. Unlike Rpart, Rall calculates the ratio of problems
containing all the ground truth object labels and propositions.
Thus, Rall can be viewed as a harder metric than Rpart.

VI. EXPERIMENTS

We conduct experiments to investigate how accurately
ViLaIn can generate PDs on the ProDG dataset. This section
first describes the generation settings of ViLaIn and then
discusses experimental results.

A. Generation Settings of ViLaIn

GPT-4 used few-shot prompting with three input/output
examples in the same domain as the current task. ViLaIn can
refine erroneous PDs by CR n times. PDs with corrected
grammatical errors can still have semantic errors, causing
no valid solutions. In such cases, CR should be performed
at least twice. Thus, we set n to two. For evaluation, we
generated ten PDs per problem by varying the example
combinations. The resulting 100 problems per domain are
used to evaluate ViLaIn.

B. Evaluation of Generation Results by ViLaIn

Table III shows the results. The Rsyntax scores are more
than 99% in all the three domains. This means that ViLaIn
can generate syntactically correct PDs for these domains
utilizing the three input/output examples. The Rplan scores
indicate that 94% or more PDs have valid plans in the
cooking and Blocksworld domains. However, in the Hanoi
domain, the Rplan score is only 58% due to its challenging

https://github.com/KCL-Planning/VAL

Open-Vocabulary
Object Detector

Captioning Model
Large

Language
Model

(define
 (problem problem1)
 (:domain cooking)
 {Objects}
 {Initial state}
 {Goal specification}
)

“Slice the carrot and
place it in the bowl.”

PDDL Problem P

Fig. 7. ViLaInwhole generates the whole problem description at once.

TABLE IV
GENERATING THE WHOLE PROBLEM DESCRIPTIONS AT ONCE

Domain Rsyntax Rplan Rall
Cooking 1.00 (+0.01) 1.00 (+0.01) 0.54 (-0.17)
Blocksworld 0.99 (+0.00) 0.99 (+0.05) 0.13 (-0.23)
Hanoi 1.00 (+0.00) 0.94 (+0.36) 0.21 (+0.09)

setting. We found from the outputs that ViLaIn tends to omit
some propositions in this domain, making the PDs invalid.

For Rpart, the scores on I and G are smaller than
those on O. This implies that generating I and G is
more challenging than O. We found that mistakenly
detected objects cause this. Predicates such as on or
at take two objects as arguments. Propositions created
with the predicates and mistakenly detected objects af-
fect other propositions. For example, (on red block
blue block) can be (on red block green block)
(on green block blue block) with a mistakenly de-
tected green block, making them all incorrect proposi-
tions. We consider that generating these incorrect proposi-
tions causes such results.

Finally, the Rall score is 71% in the cooking domain,
36% in the Blocksworld domain, and 12% in the Hanoi
domain. The scores in the cooking and Hanoi domains make
sense considering the Rplan and Rpart scores. However, the
score is unexpectedly low in the Blocksworld domain. We
found that PDs in the Blocksworld domain tend to contain
a few incorrect propositions of block relationships. In some
cases, the block positioning is mistakenly reversed (e.g.,
(on blue block red block) (on red block
green block) is reversed to (on green block
red block) (on red block blue block)). We
consider that these lead to the low Rall score in this domain.

C. Generating the Whole Problem at Once

ViLaIn generates the parts of PDs using different modules.
If a single module can generate the whole problem at once,
it greatly simplifies the system. Here, we consider a variant
of ViLaIn generating the whole PD at once, as illustrated in
Fig. 7. We refer to this model as ViLaInwhole. The generation
is performed with few-shot prompting as the original model.

Table IV shows the results with Rsyntax, Rplan, and Rall.
Values inside parenthesis indicate gains from ViLaIn. In
the cooking and Blocksworld domains, ViLaInwhole slightly
improves Rplan but worsens Rall. This means that using three
modules is more effective for these domains. In the Hanoi
domain, ViLaInwhole outperforms ViLaIn in both Rplan and
Rall. When considered with Section VI-B, this means that
ViLaInwhole generates more correct propositions than ViLaIn.
Generating the whole PDs makes the distance between

TABLE V
PERFORMANCE WITHOUT CR AND COT

CR configurations Rsyntax Rplan RallCR (n times) CoT
2 ✓ 0.99 0.99 0.71
1 ✓ 0.99 0.94 0.68
1 0.97 0.85 0.59
0 0.60 0.18 0.09

tokens of O and I or G closer. We consider that this might
work effectively and result in these improvements.

D. Generating PDs without CR and CoT

ViLaIn uses corrective re-prompting (CR) and chain-of-
thought (CoT) prompting. The CR is performed twice at
most as described in Section VI-A. Since all the PDs
so far are generated using CR with CoT, the impact of
CR on performance is still unknown. Here, we investigate
performance without CR and CoT, considering the following
configurations: (i) CR with CoT (n = 1 in Section VI-A), (ii)
CR without CoT (n = 1), and (iii) without CR (n = 0).

Table V shows the results in the cooking domain. The
first line is the same result in Table III. First, performing
CR with CoT only once (the first line) slightly drops Rplan
and Rall, meaning that repeating CR is effective. Next,
removing CoT (the third line) worsens all the scores. This
demonstrates that the introduced intermediate reasoning step
by CoT has a large impact on performance. Finally, removing
CR (the fourth line) degrades the scores significantly. This
model tends to suffer from hallucinations [47]4, such as
propositions with undefined objects (e.g., (at cucumber
counter) in I while the cucumber is not defined in O). We
found that CR effectively refines these incorrect propositions
and makes the PDs consistent.

VII. CONCLUSION

This paper has tackled multimodal planning problem spec-
ification, a new task for connecting language-guided planning
and symbolic planner. We have proposed Vision-language
interpreter (ViLaIn) that generates problem description (PD)s
from linguistic instructions and scene observations. A novel
dataset called the problem description generation (ProDG)
dataset has proposed with new metrics to evaluate ViLaIn.
The experimental results show that ViLaIn can generate
syntactically correct PDs and more than half of the PDs
have valid plans. Interesting future directions include (i)
constructing a robotic system with ViLaIn that executes
linguistic instructions, (ii) refining PDs via errors from real
robots, and (iii) reducing human effort for new tasks.

ACKNOWLEDGMENT

We would like to thank Hirotaka Kameko for his helpful
comments. This work was supported by JSPS KAKENHI
Grant Number 20H04210 and 21H04910 and JST Moonshot
R&D Grant Number JPMJMS2236.

4Also referred to as confabulations. Generating factually incorrect texts
by LLMs is a common problem in natural language processing.

REFERENCES

[1] J. Hatori, Y. Kikuchi, S. Kobayashi, K. Takahashi, Y. Tsuboi, Y. Unno,
W. Ko, and J. Tan, “Interactively picking real-world objects with
unconstrained spoken language instructions,” in Proceedings of the
2018 IEEE International Conference on Robotics and Automation
(ICRA), 2018, pp. 3774–3781.

[2] S. Tellex, N. Gopalan, H. Kress-Gazit, and C. Matuszek, “Robots that
use language,” Annual Review of Control, Robotics, and Autonomous
Systems, vol. 3, pp. 25–55, 2020.

[3] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence,
and A. Zeng, “Code as policies: Language model programs for
embodied control,” in Proceedings of the 2023 IEEE International
Conference on Robotics and Automation (ICRA), 2023, pp. 9493–
9500.

[4] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[5] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
RNN encoder–decoder for statistical machine translation,” in Pro-
ceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP). Association for Computational
Linguistics, 2014, pp. 1724–1734.

[6] D. Arumugam, S. Karamcheti, N. Gopalan, L. Wong, and S. Tellex,
“Accurately and efficiently interpreting human-robot instructions of
varying granularities,” in Proceedings of the 2017 Robotics: Science
and Systems (RSS), 2017.

[7] C. Paxton, Y. Bisk, J. Thomason, A. Byravan, and D. Fox, “Prospec-
tion: Interpretable plans from language by predicting the future,” in
Proceedings of the 2019 International Conference on Robotics and
Automation (ICRA), 2019, pp. 6942–6948.

[8] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, et al., “Llama:
Open and efficient foundation language models,” arXiv preprint
arXiv:2302.13971, 2023.

[9] OpenAI, “GPT-4 technical report,” arXiv preprint arXiv:2303.08774,
2023.

[10] R. Anil, A. M. Dai, O. Firat, M. Johnson, D. Lepikhin, A. Passos,
S. Shakeri, E. Taropa, P. Bailey, Z. Chen, et al., “PaLM 2 technical
report,” arXiv preprint arXiv:2305.10403, 2023.

[11] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch, “Language models
as zero-shot planners: Extracting actionable knowledge for embodied
agents,” in Proceedings of the 39th International Conference on Ma-
chine Learning, ser. Proceedings of the 2022 International Conference
on Machine Learning (ICML), vol. 162, 2022, pp. 9118–9147.

[12] S. S. Raman, V. Cohen, E. Rosen, I. Idrees, D. Paulius, and S. Tellex,
“Planning with large language models via corrective re-prompting,”
in NeurIPS 2022 Foundation Models for Decision Making Workshop,
2022.

[13] K. Lin, C. Agia, T. Migimatsu, M. Pavone, and J. Bohg, “Text2Motion:
From natural language instructions to feasible plans,” arXiv preprint
arXiv:2303.12153, 2023.

[14] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay,
D. Fox, J. Thomason, and A. Garg, “Progprompt: Generating situated
robot task plans using large language models,” in Proceedings of
the 2023 IEEE International Conference on Robotics and Automation
(ICRA), 2023, pp. 11 523–11 530.

[15] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhari-
wal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal,
A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,
D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford,
I. Sutskever, and D. Amodei, “Language models are few-shot learners,”
in Proceedings of the 2020 Advances in Neural Information Processing
Systems, vol. 33, 2020, pp. 1877–1901.

[16] L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal,
“Explaining explanations: An approach to evaluating interpretability
of machine learning,” arXiv preprint arXiv:1806.00069, p. 118, 2018.

[17] E. Karpas and D. Magazzeni, “Automated planning for robotics,”
Annual Review of Control, Robotics, and Autonomous Systems, vol. 3,
no. 1, pp. 417–439, 2020.

[18] P. Haslum, N. Lipovetzky, D. Magazzeni, C. Muise, R. Brachman,
F. Rossi, and P. Stone, An introduction to the planning domain
definition language. Springer, 2019, vol. 13.

[19] M. Fox and D. Long, “PDDL2.1: An extension to PDDL for ex-
pressing temporal planning domains,” Journal of artificial intelligence
research, vol. 20, pp. 61–124, 2003.

[20] S. Liu, Z. Zeng, T. Ren, F. Li, H. Zhang, J. Yang, C. Li, J. Yang,
H. Su, J. Zhu, et al., “Grounding DINO: Marrying DINO with
grounded pre-training for open-set object detection,” arXiv preprint
arXiv:2303.05499, 2023.

[21] J. Li, D. Li, S. Savarese, and S. Hoi, “BLIP-2: Bootstrapping language-
image pre-training with frozen image encoders and large language
models,” in Proceedings of the 2023 International Conference on
Machine Learning (ICML), ser. Proceedings of Machine Learning
Research, vol. 202, 2023, pp. 19 730–19 742.

[22] M. Helmert, “The fast downward planning system,” Journal of Artifi-
cial Intelligence Research, vol. 26, pp. 191–246, 2006.

[23] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David,
C. Finn, C. Fu, K. Gopalakrishnan, K. Hausman, et al., “Do as I
can, not as I say: Grounding language in robotic affordances,” arXiv
preprint arXiv:2204.01691, 2022.

[24] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choro-
manski, T. Ding, D. Driess, A. Dubey, C. Finn, et al., “RT-2: Vision-
language-action models transfer web knowledge to robotic control,”
arXiv preprint arXiv:2307.15818, 2023.

[25] B. Liu, Y. Jiang, X. Zhang, Q. Liu, S. Zhang, J. Biswas, and P. Stone,
“LLM+P: Empowering large language models with optimal planning
proficiency,” arXiv preprint arXiv:2304.11477, 2023.

[26] P. Sharma, A. Torralba, and J. Andreas, “Skill induction and planning
with latent language,” in Proceedings of the 2022 Annual Meeting of
the Association for Computational Linguistics (ACL). Association
for Computational Linguistics, 2022, pp. 1713–1726.

[27] Y. Xie, C. Yu, T. Zhu, J. Bai, Z. Gong, and H. Soh, “Translating
natural language to planning goals with large-language models,” arXiv
preprint arXiv:2302.05128, 2023.

[28] B. Bonet and H. Geffner, “Planning as heuristic search,” Artificial
Intelligence, vol. 129, no. 1, pp. 5–33, 2001.

[29] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “PDDLStream:
Integrating symbolic planners and blackbox samplers via optimistic
adaptive planning,” Proceedings of the 2020 International Conference
on Automated Planning and Scheduling (ICAPS), vol. 30, no. 1, pp.
440–448, 2020.

[30] S. R. Ahmadzadeh, A. Paikan, F. Mastrogiovanni, L. Natale, P. Ko-
rmushev, and D. G. Caldwell, “Learning symbolic representations of
actions from human demonstrations,” in Proceedings of the 2015 IEEE
International Conference on Robotics and Automation (ICRA), 2015,
pp. 3801–3808.

[31] Z. Wang, C. R. Garrett, L. P. Kaelbling, and T. Lozano-Pérez,
“Learning compositional models of robot skills for task and motion
planning,” The International Journal of Robotics Research, vol. 40,
no. 6-7, pp. 866–894, 2021.

[32] T. Silver, R. Chitnis, J. Tenenbaum, L. P. Kaelbling, and T. Lozano-
Pérez, “Learning symbolic operators for task and motion planning,”
in Proceedings of the 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2021, pp. 3182–3189.

[33] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Proceedings
of the 2015 Advances in Neural Information Processing Systems
(NeurIPS), vol. 28, 2015.

[34] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only
look once: Unified, real-time object detection,” in Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

[35] A. Zareian, K. D. Rosa, D. H. Hu, and S.-F. Chang, “Open-vocabulary
object detection using captions,” in Proceedings of the 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR),
2021, pp. 14 393–14 402.

[36] C. Lu, R. Krishna, M. Bernstein, and L. Fei-Fei, “Visual relationship
detection with language priors,” in Proceedings of the 2016 European
Conference on Computer Vision (ECCV). Springer, 2016, pp. 852–
869.

[37] S. Inayoshi, K. Otani, A. Tejero-de Pablos, and T. Harada, “Bounding-
box channels for visual relationship detection,” in Proceedings of the
2020 European Conference on Computer Vision (ECCV). Springer,
2020, pp. 682–697.

[38] D. Xu, Y. Zhu, C. B. Choy, and L. Fei-Fei, “Scene graph generation
by iterative message passing,” in Proceedings of the 2017 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR)),
2017, pp. 5410–5419.

[39] J. Yang, Y. Z. Ang, Z. Guo, K. Zhou, W. Zhang, and Z. Liu, “Panoptic
scene graph generation,” in Proceedings of the 2022 European Con-
ference on Computer Vision (ECCV). Springer, 2022, pp. 178–196.

[40] T. Migimatsu and J. Bohg, “Grounding predicates through actions,”
in Proceedings of the 2022 International Conference on Robotics and
Automation (ICRA). IEEE, 2022, pp. 3498–3504.

[41] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi,
Q. V. Le, and D. Zhou, “Chain-of-thought prompting elicits reasoning
in large language models,” in Proceedings of the 2022 Advances in
Neural Information Processing Systems (NeurIPS), vol. 35. Curran
Associates, Inc., 2022, pp. 24 824–24 837.

[42] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, “Large
language models are zero-shot reasoners,” in Proceedings of the
2022 Advances in Neural Information Processing Systems (NeurIPS),
vol. 35. Curran Associates, Inc., 2022, pp. 22 199–22 213.

[43] D. Zhou, N. Schärli, L. Hou, J. Wei, N. Scales, X. Wang, D. Schuur-

mans, C. Cui, O. Bousquet, Q. V. Le, et al., “Least-to-most prompting
enables complex reasoning in large language models,” in Proceedings
of the 2023 International Conference on Learning Representations
(ICLR), 2023.

[44] N. Gupta and D. S. Nau, “On the complexity of blocks-world
planning,” Artificial intelligence, vol. 56, no. 2-3, pp. 223–254, 1992.

[45] R. Alford, U. Kuter, and D. S. Nau, “Translating HTNs to PDDL:
A small amount of domain knowledge can go a long way.” in
Proceedings of the 2009 International Joint Conference on Artificial
Intelligence (IJCAI), vol. 9, 2009, pp. 1629–1634.

[46] T. Silver and R. Chitnis, “PDDLGym: Gym environments from PDDL
problems,” in Proceedings of the 2020 International Conference on
Automated Planning and Scheduling (ICAPS) PRL Workshop, 2020.

[47] J. Maynez, S. Narayan, B. Bohnet, and R. McDonald, “On faithfulness
and factuality in abstractive summarization,” in Proceedings of the
2020 Annual Meeting of the Association for Computational Linguistics
(ACL). Association for Computational Linguistics, 2020, pp. 1906–
1919.

	INTRODUCTION
	RELATED WORK
	Planning from Natural Language
	Symbolic Planning with PDDL
	Scene Recognition for Planning Problem Specification

	PROBLEM STATEMENT
	Vision-Language Interpreter
	Object Estimator
	Initial State Estimator
	Goal Estimator
	Corrective Re-Prompting

	Dataset
	Evaluation Metrics

	Experiments
	Generation Settings of ViLaIn
	Evaluation of Generation Results by ViLaIn
	Generating the Whole Problem at Once
	Generating PDs without CR and CoT

	CONCLUSION
	References

