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            Abstract  

Conditional random fields (CRF) can generate high-quality 

confidence measure scores (CMS) for speech recognition sys-

tems. However, like many other real-world machine learning 

tasks, there are only limited annotated data for training but al-

ways abundant unlabeled data, which requires too much hu-

man efforts and expertise to annotate. To address this issue, 

we use a scheme of CRF training for ASR confidence estima-

tion, which does not require full annotation transcripts but ex-

ploits partially annotated data. We use multiple ASR systems 

and other freely accessible resources (e.g. caption texts) to 

generate partially annotated data. Compared with only using a 

small amount of annotated data and totally using automatically 

generated unfaithful annotations, the CMS can be enhanced by 

our proposed method.  

 

Index Terms:  speech recognition, confidence measure score, 

conditional random fields 

1. Introduction 

The confidence measure score (CMS) indicates the 

reliability of hypothesis words of automatic speech recognition 

(ASR) systems. High-quality CMS can improve the data 

selection for unsupervised acoustic model training [1], MLLR 

speaker adaptation [2], system combination [3] and various 

spoken language processing (SLP) applications [4].  

A number of approaches have been proposed in the area of 

confidence estimation [5]. In the conventional methods, CMS 

is estimated as a posterior probability of a word or an utterance 

given the acoustic signal through ASR lattices [6], N-best lists 

[7], word-trellis [8] or confusion network [9], or minimum 

Bayes risk (MBR) decoding [10, 11]. However, these methods 

are heavily influenced by the hypothesis size. They are en-

hanced by using a piecewise linear mapping over decision tree 

(DT) boundaries [12] or using classifiers trained on a set of 

predictor features [5, 13].  

Conditional random fields (CRF) models [14], which can 

combine multiple sources such as acoustic, lexical, linguistic 

and semantic features, with contextual information, can effec-

tively enhance CMS [15, 16]. There are many works in recent 

years focusing on how to enhance the conventional CRF for 

deriving robust CMS. In [16], CRF is designed to support con-

tinuous features. Hidden variables have also been introduced 

to the CRF model in [17]. Other studies, e.g. [18] estimated 

the CMS using CRF models on the confusion networks, and 

showed improvement in the performance.   

However, like many other real-world machine learning 

tasks, there are only limited annotated data for training but al-

ways abundant unlabeled data, which requires too much hu-

man efforts and expertise to annotate. To address this issue, a 

scheme of CRF training, which does not require full annota-

tion transcripts but exploits partially annotated data, has been 

studied for part-of-speech (POS) tagging, word segmentation 

[19, 20], named entity recognition tasks [21]. In this method, 

conditional probabilities over partially annotated data are for-

mulated. Training is achieved by the modification of the learn-

ing objective function, incorporating partial annotation likeli-

hood, so that a single model can be trained consistently with a 

mixture of full and partial annotation [22].  

In this paper, we focus on the training CRF-based ASR con-

fidence estimator for speech recognition systems with only 

limited annotated data and abundant partially annotated data 

generated by multiple ASR systems and other freely accessible 

resources (e.g. caption texts). The experiments show that our 

proposed method can effectively enlarge the training set and 

enhance the quality of CMS. 

In the remainder of this paper, a comprehensive study of 

training CRF model with partial annotation is formulated in 

Section 2.  Next, we will describe how to generate partial an-

notation in Section 3. Then, our implementation and the exper-

imental results are presented in Section 4. Finally, the paper is 

concluded in Section 5. 

2. Training CRF with partial annotation 

2.1. Full and partial annotations  

Fig. 1 and Fig. 2 show examples of full and partial annota-

tions, respectively.  In these figures, “T” and “F” stand for the 

“true” and “false” of the recognized characters. The label se-

quence is demonstrated as a path consisting of nodes and ar-

rows. By choosing one label for each hypothesis character, we 

can get full label sequence {(true)  (true)  (false)  (true) 

 (true)  (true)  (false)…} as shown in Fig. 1.  

 

T

明 天 回 有 人

T T T

F F F F F

来 部

T T

F F

T

Anyone coming tomorrow？

 

Fig. 1 Example of fully annotated utterance. 

(Label sequence is in white color.) 

 

In the case of partial annotation, instead of assigning each 

hypothesis character a symbolic label, we assign a non-empty 

subset of the label space {true, false} to each hypothesis char-

acter. In Fig. 2, the label sequence is as follows: {(true)  

(true)  (false)  (true, false)  (true, false)  (true)  

(true)…}. 
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T

今 天 哦 啊 很

T T T

F F F F F

高 兴

T T

F F

T

Today, I'm very happy.

 
Fig. 2 Example of partially annotated utterance. 

(Label sequence is in white color.) 

2.2. Train CRF model with full annotations 

A CRF is a discriminative model which estimates the condi-

tional probability. Let y = (y1, y2, … , yN) be a label sequence 

given the input feature sequence x = (x1, x2, … , xN), where N 

is the sequence length and yi {true, false}. This conditional 

probability is written as the normalized log-linear function as 

Equation (1).  
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where θ = (λ1, λ2, … , λk) are model parameters, fk is the k-th 

feature function, and Zθ (x) is the probability normalizer. 

For fully-annotated training data, learning of CRF is to 

maximize the log-likelihood over all the training data as:  
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Both the likelihood and its gradient can be calculated by 

performing the forward-backward algorithm [24] and the se-

quence optimization algorithms can be used to learn the model 

parameters, e.g. Limited Memory-BFGS [25]. 

2.3. Train CRF model with partial annotations  

We use the method in [22] and model conditional probabili-

ties over partially annotated data. Training is achieved by 

modification to the learning objective function, incorporating 

partial annotation likelihood, so that a single model can be 

trained consistently with a mixture of full and partial annota-

tion. 

As we discussed in Section 2, the possible labels that corre-

spond to the partial annotation as L = (L1, L2, ..., LN), where 

each Li is a non-empty subset of the label space {true, false} 

that corresponds to the set of possible labels for feature xi. Let 

YL be the set of all possible label sequences where y YL, yi 

 Li. The conditional probability of YL can be modeled as 
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The normalizer Zθ (x) is in the same format as in Equation (2). 

If each element in YL is constrained to one single label, the 

CRF model in Equation (5) will roll back to Equation (1). So 

we can get a unified framework to train CRF models with both 

fully and partially annotated data. The log marginal probability 

of YL over N partially annotated training examples can be 

formalized as follows. 
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By introducing modification to the forward-backward algo-

rithm [22] with the same optimization algorithms, we can 

learn the model parameters. 

3. Full and partial annotation generation 

3.1. Full annotation generation using reference 

We generate an ASR hypothesis (1-best) using the ASR sys-

tem as shown in Fig. 3. By referring to the faithful annotation 

(reference) after the character-level alignment, we can extract 

the positive (T) and negative (F) labels on character level for 

CRF models training.  

Matching
(conventional)

ASR decoding

Train
CRF

model

ASR

Full annotation 
extraction

Reference

Text alignment

ASR Hypo.

Reference

labeled
data

 

Fig. 3 Extraction of the full label by matching.  
(Matching: “T” and Mismatching: “F”.) 

3.2. Partial annotation generation using multiple ASR hy-

potheses and other accessible texts  

Here we propose a voting mechanism to generate a partial 

annotation for unlabeled data set as shown in Fig. 4. We get 

the hypotheses from multiple ASR systems. The voting score 

is calculated from the multiple ASR hypotheses and other ac-

cessible texts (e.g. the caption text) by a multi-way character 

alignment.  

The training samples with highest voting scores will be re-

garded as the positive label (T), and the samples with lowest 

scores are given the negative label (F). Others are given a par-

tial label (T|F).  

Voting
(proposed)

Multiple ASR decoding

corresponding resources
(caption texts, cloud sourcing, etc.)

Full and partial 
annotation extraction

Train
CRF

model

ASR1

ASR2

Text alignment

ASR1 Hypo.

Other
Resources

…

ASR2 Hypo.

…
…

unlabeled
data

 

Fig. 4 Generation of partially annotated data by voting.  

4. Implementation and evaluations 

4.1. Data preparation 

We made a corpus of Chinese spoken lectures (CCLR) [33]. 

We selected 58 annotated lectures as the training set (CCLR-

SV), 19 annotated lectures as the test set (CCLR-TST) and 12 

annotated lectures as the development set (CCLR-DEV). The 

126 un-annotated lectures (CCLR-LSV) only with caption text 

are also used as an additional training set, and we generated 

the full and partial annotation for it. 



 

 

 

  

 

 

 

 

 

 

 

4.2. Baseline ASR system and performance 

The dictionary for ASR consists of 53K lexical entries from 

CCLR-SV together with Hub4 and TDT4. The OOV rate on 

CCLR-TST is 0.368%. The pronunciation entries were derived 

from the CEDICT1 open dictionary. We adopt 113 phonemes 

(consonants and 5-tone vowels) as the basic HMM unit.  

A word trigram language model (LM) was built for decod-

ing. We interpolated the 1.07M words text (including faithful 

transcription texts of CCLR-SV and closed caption texts of 

CCLR-LSV) with LDC corpora (Hub4 of 0.34M, TDT4 of 

4.75M and GALE of 1.03M) and the Phoenix lecture archive2 

(4.12M). The interpolated weights were determined to get the 

lowest perplexity on CCLR-DEV. 

We first build a GMM-HMM system and then a DNN-

HMM system. Since the data size of CCLR-SV is not large 

enough to train a baseline lecture transcription system, we in-

troduced a lightly-supervised training method [23, 34] to en-

hance the model training by exploiting usable data in another 

large data set CCLR-LSV with closed caption texts. 

The GMM system uses PLP features, consisting of 13 

cepstral coefficients (including C0), plus their first and second 

derivatives, leading to a 39-dimensional feature vector. For 

each speaker, cepstral mean normalization (CMN) and cepstral 

variance normalization (CVN) are applied to the features.  It is 

trained with the MPE criterion. 

The DNN system uses 40-dimensional filterbank features 

plus their first and second derivatives with splicing 5 frames 

on each side of the current frame, and has 1320 nodes as input, 

3000 nodes as output and 7 hidden layers with 1024 nodes per 

layer. The activation function is the sigmoidal function. Train-

ing of DNN consists of the unsupervised pre-training step and 

the supervised fine-tuning step. We use Kaldi toolkit (nnet1) 

[26]. The SGD uses mini-batches of 256 frames, and a default 

“Newbob” learning rate schedule. The cross-validation set is 

held out from the training data by 10%. To accelerate the 

training time, we use single GPU (Tesla K20m). On this stage, 

the training is based on the CE criterion, and sequential dis-

criminative training is not conducted. For decoding, we use 

Julius ver.4.3.1 (DNN version3) [27] using the state transition 

probabilities of the GMM-HMM. 

This baseline system achieved an average Character Error 

Rate (CER) of 24.2% and 27.5% with the MLLR speaker 

adapted GMM-HMM model, and 22.7% and 25.7% with the 

DNN-HMM model for CCLR-DEV and CCLR-TST, respec-

tively. 

4.3. Full annotation generation using reference 

We use the unlabeled data set CCLR-LSV to generate the 

partial annotation (LSV-partial). We can only get unfaithful 

caption texts instead of references. As an economical choice, 

we make a three-way character alignment between hypotheses 

from the baseline DNN (CE) system and the baseline GMM 

(MPE+MLLR) system and the caption texts. The voting score 

is the counted. The training samples with the highest scores 

(voting score=3) will be regarded as the positive label (T), and 

the samples with the lowest scores (voting score=1) are given 

the negative label (F). Others (voting score=2) are given a 

partial label (T|F). The insertion and deletion cases are 

regarded as a null token.  

We also generate a full label of CCLR-LSV (LSV-full) for 

comparison by simply using matching or mismatching infor-

mation between DNN hypotheses and caption texts. Other full 

annotation sets listed in Table 1 (SV, TST, and DEV) are gen-

erated by matching the ASR hypotheses from the baseline 

DNN system and the reference texts. 

Table 1 Organization of Annotation for training and 

testing CRF models. 

Name Data Sets #positive 

(T) 

#negative 

(F) 

#partial 

(T|F) 

Label 

Type 

SV CCLR-SV 161.8K 85.2K / Full 

LSV-partial CCLR-LSV 455.3K 119.4K 444.8K Partial 

LSV-full CCLR-LSV 542.5K 477.0K / Full 

TST CCLR-TST 131.1K 43.5K / Full 

DEV CCLR-DEV 80.5K 22.5K / Full 

4.4. Feature design and classifier implementation  

A list of features is shown as follows. These features in-

clude both acoustic and linguistic information sources. We 

group these features into two categories: ASR-based features 

and text-based features. They are listed in Table 2. 

Table 2 Feature design. 

Categorize Features 

ASR-based  

feature 

1. Confidence measure score (CMS) [8].  

2. Duration of the current word (DUR). 

3. Word trigram LM score (WLM). 

4. Acoustic model score averaged per frame (AM). 

5. Number of left competing words in the lattice (NLW). 

6. Number of right competing words in the lattice (NRW). 

7. Density within word duration (DEN). 

Text-based  

feature 

1. Lexical entry of current character (LEX). 

2. Part-Of-Speech for each character unit (POS) [28]. 

3. 5-gram char LM probability (CLM). 

4. 5-gram char LM back-off behavior (BO). 

 

The ASR-based features are extracted from the word graph 

during decoding, and simply distributed to each character in 

the word. They are all numeric features. The text-based fea-

tures are obtained by syntactic analysis on the character level. 

LEX, POS, and BO are symbolic features. CLM is numeric. 

Note that each Chinese character represents a syllable and 

has a corresponding meaning [32]. We extract the feature from 

the character level regardless of different word segmentations 

and OOV problem. With a smaller vocabulary size (about 5K), 

we can train the CRF model and investigate higher-order lan-

guage model constraints more efficiently. 

Contextual information of two preceding characters and two 

successive characters are also incorporated in the symbolic 

features (LEX, POS, and BO). 

Integration of numeric features (CMS, DUR, WLM, AM, 

NLW, NRW, DEN, CLM) in CRF is not straightforward be-

cause CRF implementations process numeric values as sym-

bols. For most of the numeric feature, too many symbols make 

the feature inefficient. Other than using the method in [29], 

which modifies the feature function of CRF, our implementa-

tion uses the method4 described in [30] to discretize numeric 

features; thus grouping together similar values and reducing 

the number of symbols.  

In our experiments, we use the implementation of partial 

CRF [19], which is based on an open source toolkit CRFSuite5 

and uses the Limited Memory-BFGS algorithm to learn pa-

rameters.  

The settings for training these CRF models are as follows: 

Maximize the logarithm of the likelihood of the training data 



 

 

 

  

 

 

 

 

 

 

 

with L1 and L2 regularization terms using the L-BFGS meth-

od. The maximum number of iterations for L-BFGS optimiza-

tion is 100. The cut-off threshold for occurrence frequency of 

features is 1. 

We trained CRF models with various feature sets using 

CCLR-SV full annotation data and evaluated on CCLR-DEV, 

as shown in Table 3. The definition of Recall, Precision and F-

score are listed as follows: 
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where TP is true positives (correct output), FP is false posi-

tives (false alarm), and FN is false negatives (miss).  

Table 3 Classification accuracy on CCLR-DEV. 

 Positive Label (T) Negative Label (F) 
Feature Recall Precision F-score Recall Precision F-score 
LEX 0.946 0.834 0.887 0.325 0.628 0.428 
POS 0.930 0.822 0.873 0.278 0.525 0.364 
CLM 0.961 0.815 0.882 0.219 0.613 0.323 
BO 0.895 0.825 0.859 0.322 0.461 0.379 
All Text  0.912 0.869 0.890 0.508 0.618 0.557 
CMS 0.941 0.833 0.884 0.323 0.605 0.421 
DUR 0.968 0.812 0.883 0.197 0.633 0.300 
WLM 0.965 0.812 0.882 0.201 0.619 0.304 
AM 0.952 0.827 0.885 0.285 0.623 0.391 
NLW 0.970 0.810 0.883 0.187 0.634 0.289 
NRW 0.964 0.812 0.882 0.202 0.610 0.304 
DEN 0.970 0.810 0.883 0.186 0.637 0.288 
All ASR 0.921 0.872 0.896 0.517 0.647 0.575 
All Features 0.907 0.907 0.907 0.668 0.668 0.668 

 

Among the set of features, the ASR-based features are 

generally more effective than the text-based features, and the 

combination of both feature sets shows further improvement. 

We adopt the complete feature set for following experiments.  

4.5. Evaluation  

We choose following metrics to evaluate the CMS. 

 

 Normalized Cross Entropy (NCE): It assigns the in-

formation gain to each of the hypothesis words to assess 

the quality of the CMS distribution [31]. Higher values 

of NCE indicate better ASR confidence estimation. Per-

fect ASR confidence estimates give an NCE of 1. The 

definition of NCE is as follows:  
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where n is the number of correct hypothesis words, N is 

the total number of hypothesis words,
c

p  is the average 

probability that an output word is correct (=n / N),  wp̂  

is the confidence measure of hypothesis word w. 

 

 Equal Error Rate (EER): the false alarm rate or the 

miss rate at the CMS threshold where the false alarm and 

the miss rate get equal. Lower values of EER indicate 

better ASR confidence estimation. Perfect ASR confi-

dence estimates give an EER of 0. 

 

We compare the other two CRF models with our proposed 

method, and they are listed as follows:  

 

 CRF-baseline: the model trained by only using full an-

notation of CCLR-SV (SV in subsection 4.3). 

 CRF-full: the model trained by mixing SV and full an-

notation of CCLR-LSV (LSV-full in subsection 4.3).  

 CRF-partial: the model trained by combining SV with 

partial annotation of CCLR-LSV (LSV-partial in sub-

section 4.3).  

 

We use these three CRF models to generate CMS for the re-

sult from the ASR system (baseline DNN-HMM model) on 

two different evaluation sets as shown in Table 4. The charac-

ter error rate (CER%) of recognition is 22.7% for CCLR-DEV 

and 25.7% for CCLR-TST as described in subsection 4.2. 

Table 4 Performance evaluation on CCLR-DEV and 

CCLR-TST (by the NIST SCLite scoring tool). 

 Annotation Sets 

for Training 

CCLR-DEV CCLR-TST 
NCE EER% NCE EER% 

CRF-baseline SV / 0.360 18.5 0.327 19.0 
CRF-full SV LSV-full 0.359 18.5 0.324 19.0 
CRF-partial SV LSV-partial 0.390 18.0 0.363 18.0 

 

From Table 4, we observed that the CMS from the CRF-

full is not improved and even degraded in NCE compared to 

CRF-baseline. This means the full annotation which is 

automatically generated includes too much noise (uncertainty 

of labels), and they should not be used for training CRF 

models directly. 

However, our proposed method (CRF-partial) can 

effectively improve the performance on both NCE and EER. 

The reason is the noisy labels are described as in a 

probabilistic way by using partial annotation. It can be 

regarded as a kind of soft weighting in training.   

Experiments show that our proposed method can effectively 

enlarge the training data. We can train the CRF-based 

classifiers by using partial annotations for data selection and 

verification in semi-supervised training [35].  

In the future, we can efficiently conduct annotating the 

speech data by selectively annotating a small data set and 

generating the partial annotations for the rest part. Such active 

learning technique already has been used in NLP field. 

Moreover, since data imbalance problem widely exists and 

always influences the accuracy of classification problem, 

using partially annotated data could be another possible 

solution.  

5. Conclusions  

In this paper, we present a novel CRF model training 

scheme for ASR confidence estimation with only limited an-

notated data and abundant partially annotated data. The train-

ing data can be effectively enlarged, and experimental evalua-

tions show that the proposed method can enhance the CMS, 

comparing with only using the small amount of annotated data 

and entirely using automatically generated unfaithful full an-

notations. 

 
1
Available at http://cc-cedict.org/wiki/ 

2
Available at http://v.ifeng.com/gongkaike/sjdjiangtang/ 

3
Available at http://julius.osdn.jp/en_index.php#latest_version 

4
Available at http://www.irisa.fr/texmex/people/raymond/Tools/tools.html 

5
Available at http://www.chokkan.org/software/crfsuite/ 
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