Combining Active Learning and

Partial Annotation for Japanese Dependency Parsing

Daniel FLANNERY"! Yusuke MIYAQO?

!Graduate School of Informatics, Kyoto University

1 Introduction

The machine learning-based approaches that dominate
natural language processing research require massive
amounts of labeled training data. Active learning has
the potential to substantially reduce the human effort
needed to prepare this data by allowing annotators to
focus on only the most informative training examples.

This paper shows how active learning can be used
for domain adaptation of dependency parsers, and how
entropy-based strategies can be used to select smaller
units for annotation. We show how these strategies can
be combined with partial annotation to annotate infor-
mative examples in the new domain without annotating
full sentences. Research on active learning often uses
simulations, but we measured the actual time needed by
a human annotator for annotation work to better frame
the results obtained in our simulations.

We evaluate strategies based on both full and partial
annotation in several domains, and find that they re-
duce the amount of in-domain training data needed for
domain adaptation by up to 75% compared to random
selection. While annotation speeds were similar for both,
the proposed partial annotation strategy delivers better
in-domain performance for the same amount of human
effort.

2 Background

There has been much recent work on active learning for a
variety of natural language processing tasks [6], but most
of it is concerned only with the single-domain case. Ac-
tive learning is a promising approach for domain adap-
tation because it offers a way to reduce the amount of
data needed to train classifiers, minimizing the amount
of difficult in-domain annotation. This type of annota-
tion requires annotators to have both domain knowledge
plus familiarity with annotation standards.

Previous work on active learning for structured predic-
tion tasks like parsing [2] often assumes that the train-
ing data must be fully annotated. But recent work on
dependency parsing [1] has shown that models trained
from partially annotated data (where only part of the
tree structure is annotated) can achieve competitive per-
formance. However, deciding which portion of the tree
structure to annotate remains a difficult problem.

2.1 Pool-Based Active Learning

We use the pool-based approach to active learning [3],
because it is a natural fit for domain adaptation. In
this framework, we begin with a small amount of la-
beled initial training data Dy, (corresponding to labeled

Shinsuke MORI! Tatsuya KAWAHARA!
2National Institute of Informatics

source domain corpora) and a large pool of unlabeled ini-
tial data Dy (corresponding to unlabeled target domain
text) from which to choose training examples.

In each iteration the entire pool is evaluated sequen-
tially and its members are ranked by their estimated
training value as determined by some criterion, called
the query strategy. The top instances are typically se-
lected greedily. The basic flow of pool-based active learn-
ing is described below.

1. Use a base learner B to train a classifier C from the
labeled training set Dy.

2. Apply C to the unlabeled data set Dy and select I,
the n most informative training examples.

3. Make a query to the oracle for the correct labels of
training instances in I.

4. Move training instances in I from Dy to Dy,.
5. Train a new classifier C’ by applying B to Dp.

6. Repeat steps 2 to 5 until some stopping condition
is fulfilled.

2.2 Query Strategy Design

An important difference from previous work is how we
apply active learning for parsing. Both Sassano and
Kurohashi [7] and Hwa [2] studied the single-domain
case, where the initial labeled data set and the pool of
unlabeled data share the same domain. This paper fo-
cuses on adaptation from one domain to another.

Previous work on active learning for parsing [8, 2] has
focused on selecting sentences to be fully annotated. Sas-
sano et al. [7] showed that smaller units like phrases
(bunsetsu) could also be used in an active learning sce-
nario for a Japanese dependency parser. Their work in-
cluded results for partially annotated sentences, but did
not use entropy-based query strategies [8, 2] designed
for selecting whole sentences because of the difficulty of
applying them. We use an even smaller unit, words, and
show how entropy-based measures can be successfully
applied to their selection.

2.3 Pointwise Dependency Parsing

The motivation for this approach is to design a query
strategy that allows for partial annotation of individual
words. We believe that this type of query strategy will be
useful when adapting parsers to new domains. We use
a pointwise dependency parser [1] in our experiments.
In the pointwise approach to dependency parsing, each

word’s head is predicted independently. Only simple fea-
tures based on surface forms and part-of-speech (POS)
tags of words, and first-order features between pairs of
head and dependent words are used. Higher-order fea-
tures that refer to chains of two or more dependencies
are not used. These restrictions make it easier to train
on partially annotated sentences.

2.4 Tree Entropy

Hwa [2] proposed an active learning query strategy called
tree entropy for selecting sentences to be fully annotated.
Choosing a parse tree v for a sentence from the set of
possible parse trees V is treated as assigning a value to
the random variable V. The entropy of V,

H(V) ==Y p(v)log,(p(v)), (1)

veVY

is equivalent to the expected number of bits needed to
encode the distribution of possible parse trees. Here,
p(v) is the probability of assigning a single parse tree
V' = v using a given parsing model. Spiked distributions,
corresponding to higher uncertainty of the model, have
higher entropy. Longer sentences will have more parse
trees in V and thus thus a larger value of H(V). To
compare sentences of varying lengths we normalize H (V)
by the log of the number of parse trees in V.

3 Partial Annotation as a Query Strat-
egy
3.1 1-Stage Selection

To use tree entropy as a strategy for partial annota-
tion, we propose to change the unit of selection to words
as follows. Consider a word w; in an input sentence
w = (w1, wa, ..., w,), tagged with part-of-speech (POS)
tags t = (t1,t2,...,1,) by a tagger. We will model
the distribution of its possible heads, or head entropy.
Let w; be a single head word for w;, where j > i and
w; # w;'. Then we can redefine v as a choice of position
j and V as the set of legal values for j. Thus p(v) be-
comes the probability of choosing the word at position j
as the head of the one at position i. The parser we use
[1] calculates p(v) = p(j|i) as follows. The feature vec-
tor ¢ = (@1, @2, ..., Pm) consists of non-negative values
calculated from features on pairs (,7) along with their
contexts w and t, with corresponding weights given by
the parameter vector 8 = (61,02, ...,0.,).

exp (0 - p(x,)
Zj/ej exp (6 - ¢(z, ')

The simplest way to combine this query strategy with
partial annotation is to choose individual words from the
pool with the highest head entropy. We call this query
strategy 1-stage.

3.2 2-Stage Selection

p(j|w,t,i,0) = (2)

We expect 1-stage to perform well at identifying words
with high training value. However, in reality it is difficult

1We assume that Japanese is a head-final language, and that
each head wj; is located to the right of its dependent w; in the
sentence.

to annotate heads for individual words without consid-
ering the overall sentence structure, so annotators must
consider other dependencies. 1-stage does not realisti-
cally model annotation costs.

To address this problem, we propose a novel strategy
called 2-stage which more accurately reflects the annota-
tion process. It balances the ability to select fine-grained
units for annotation against the difficultly of annotating
them.

Words to annotate with heads are chosen in two steps.
First, the entropy of each sentence in the pool is calcu-
lated by summing the head entropy of its words, and sen-
tences are ranked from highest to lowest summed head
entropy. Next, the sentence with the highest head en-
tropy is chosen and the words it contains are ranked in
decreasing order by their head entropy. A fixed propor-
tion r of the highest-entropy words are then annotated.
This value balances annotation granularity against an-
notation difficulty. A value of r = 1.0 is the standard
full annotation case where all words are annotated with
heads, and » = 0.33 means that the top 33% of the
highest-entropy words in the sentence will be annotated.
In Section 4, we report results for these two values,
though several were tried.

4 Evaluation

As an evaluation of the query strategies we proposed,
we measured the reduction in annotated dependencies
in the target domain needed to reach a certain level of
in-domain accuracy. For the 2-stage strategy, we also
measured how many dependencies a real annotator could
annotate in a given time using partial and full annota-
tion.

We used a corpus of example Japanese sentences from
a dictionary as source domain training data. We also col-
lected Japanese text from three target domains: news-
papers, journal article abstracts, and patents. See Table
1 for the details. Domain adaptation is needed in each
case, because sentence length and vocabulary differs for
each. Words in each sentence were manually segmented
and annotated with their heads. POS tags were auto-
matically assigned with the tagger KyTea [5].

4.1 Number of Annotations

We first investigate how much the proposed strategies
reduce the number of in-domain dependencies needed
for domain adaptation. Because real annotation is very
costly and not strictly necessary to measure this reduc-
tion, we simulate active learning by selecting gold de-
pendency labels from the annotation pool. In practice,
we are also concerned with the time needed for a human
to annotate dependencies, which we examine in Section
4.2. Thus, good performance in this first experiment is
a necessary but not sufficient condition for an effective
strategy. Because we assume that Japanese is a head-
final language and heads always occur to the right of
their dependents, for all strategies the last word in each
sentence is never chosen. For 1-stage and 2-stage, we
also skipped the second-to-last word in each sentence.
In addition to the 1-stage and 2-stage methods, we
also tested two simple baselines. The strategy random

Table 1: Sizes of Corpora.

ID source sentences | words | avg. length | dependencies
EHJ-train | Dictionary examples 11,700 | 147,964 12.6 136,264
= NKN-train | Newspaper articles 9,023 | 263,425 29.2 254,402
2 JNL-train | Journal abstracts 322 12,263 38.1 11,941
NPT-train | NTCIR patents 450 18,378 40.8 17,928
+ NKN-test Newspaper articles 1,002 29,037 29.0 28,035
§ JNL-test Journal abstracts 32 1,116 34.9 1,084
NPT-test NTCIR patents 50 2,275 45.5 2,225
0.920 ‘ ‘ 0.930
> >
o N o
£ Ny &
5 0910 AJH/{_: 3 0.920
(@] bl (@]
< : AR <
> 0.900 r W g] C
& (WM S 0.910
a a
~ 0890 | - 1 -
g 8 0900 /
c 0.880 2-stage, r=0.33 —+— | o 1-stage
e 1-stage —=— e P 2-stage, r=0.33 —+—
S 0.870 length —— | g 0890 / 2-stage, r=1.0]
= 2-stage, r=1.0 —~— = random ——
— ‘ ‘ ‘ random ——— — length ——

0.860

0 5 10 15 20 25 30 35 40
Iterations (x100 Annotations)

Figure 1: Newspaper (NKN) domain learning curves.

simply selects words randomly from the pool. The length
strategy simply chooses words with the longest possible
dependency length?. This strategy reflects our intuition
that long-distance dependencies are more difficult.

We use EHJ-train as the initial training set and per-
formed 40 iterations of active learning. In each iteration,
we select 100 target domain dependency annotations, re-
train the model, and then measure its in-domain accu-
racy.

Figure 1 shows the results for the newspaper domain.
The accuracy of the random strategy increases slowly
and peaks at just over 90.5%. The horizontal line shows
the highest accuracy achieved by random. For the first
ten iterations the length strategy delivers an improve-
ment over random, but performs essentially the same af-
ter that. This is probably because newspaper sentences
are on average longer than dictionary examples (see Ta-
ble 1), so at first words with the potential for longer
dependencies are slightly more informative. However,
this strategy is focused only on the training data and
does not reflect the continuous updates of the model,
and it soon begins to falter.

The 2-stage strategy with partial annotation (r =
0.33) dominates all other methods, though 1-stage
reaches the same level after 35 iterations. Its peak ac-
curacy reaches 91.5%, and it outperforms the best accu-
racy achieved by random after just 17 iterations. In con-
trast, the 2-stage strategy with full annotation (r = 1.0)
performs consistently worse than the partial annotation
version, with behavior similar to length. While 1-stage
always outperforms random, somewhat surprisingly it
lags behind 2-stage with partial annotation.

Figure 2 and Figure 3 show results for the journal and
patent domains, respectively. For these domains, 2-stage

2This is the same as selecting dependencies with the largest
number of potential heads because we do not refer to the gold
dependencies until after words have been selected.

0.880 " : : ‘ :
0 5 10 15 20 25 30 35 40

Iterations (x100 Annotations)

Figure 2: Journal (JNL) domain learning curves.

0.930
0.920
0.910
0.900
0.890
0.880
0.870
0.860
0.850
0.840

0830\ L L L L
0 5 10 15 20 25 30 35 40

Iterations (x100 Annotations)

1-stage 1
2-stage, r=0.33 —=—
2-stage, r=1.0 ——
random ——— |
length —=—

Target Domain Dep. Accuracy

Figure 3: Patent (NPT) domain learning curves.

with partial annotation failed to outperform 1-stage.
However, it still performed better than the same strategy
with full annotation. These results suggest that partial
annotation is valuable in domains where sentences are
usually very long. As in the newspaper domain, in the
patent domain the performance of 2-stage with full an-
notation is better than random for the first few iterations
but soon becomes similar. This is not true in the journal
domain, where this strategy consistently beats random.
The length strategy edges out random for a few itera-
tions in both domains, but ultimately their performance
is similar.

Table 2 shows the number of annotations needed for
the highest accuracy by the random baseline in the sec-
ond column, while the next two show the number of an-
notations needed by 1-stage and 2-stage to outperform
it. Numbers in parentheses show the difference between
the second column as a percentage. Thus, larger percent-
ages are better. 1-stage reduces the labeled in-domain
data by 67% to 82% in each domain. In comparison, 2-
stage has slightly lower reductions, ranging from 56% to
75%. Reductions were largest for the journal domain and

Table 2: Reduction in In-Domain Data.

domain | rand 1-stage 2-stage, r=0.33
NKN 4000 | 700 (82%) 1700 (58%)
JNL 4000 | 700 (82%) 1000 (75%)
NPT 3600 | 1200 (67%) 1600 (56%)
0.930 ‘ ‘ :

)

S 0.920

§ 0.910

< 0.900

§' 0.890

c 0.880 “‘

g 0.870 i JNL 0.33avg —— |

8 0.860 7 JNL 1.0avg —— ||

- NKN 0.33 avg —=—

o 0.850 i NKN 1.0 avg —— |]

S 0.840 | NPT 0.33avg —— |{

[NPT1.0avg —~—

0.830

0 05 1 15 2 25 3 35 4
Estimated Annotation Time (Hours)

Figure 4: Learning curves in each domain.

smallest for the patent domain. We can see that entropy-
based strategies substantially reduce the amount of tar-
get domain data needed for domain adaptation.

4.2 Time Required for Annotation

We also measured annotation time for the 2-stage strat-
egy. We trained a model on EHJ-train plus NKN-train
and used this model and the 2-stage strategy to select
dependencies to be annotated by a human annotator.
The pool is 747 blog sentences® from the Balanced Cor-
pus of Contemporary Written Japanese [4]. We selected
2k dependencies in a single iteration so the annotator
did not need to wait while the model was retrained af-
ter each 100 annotations. While the annotation cost for
dependencies is not constant, this simplification is justi-
fied because we expect the annotation strategy (partial
or full) to have a larger effect on the overall annotation
speed than the dependencies that are selected.

A single annotator performed annotations for one hour
each using the 2-stage strategy for both r = 0.33 (partial
annotation) and r = 1.0 (full annotation), alternating
strategies every fifteen minutes. Sentences with more
than forty words were not presented. Table 3 shows the
total number of dependencies annotated after each time
period. After the first fifteen minutes, the annotator
completed 226 annotations compared with 141 for full
annotation, an increase of about 60%. However, as time
progresses the difference in methods becomes smaller,
and after one hour the number of annotations was almost
identical for both strategies.

Because several dependencies in a sentence are trivial,
we expected the annotator to complete more when using
full annotation case. However, the annotator reported
that he was forced to spend much more time checking the
annotation standard and examples of complicated lin-
guistic phenomena in the case of full annotation, which
increased the annotation time. He was able to skip much
of this work when using partial annotation. This result
shows the need for realistic models of annotation costs

3This data was taken from the Yahoo! Blog (OY) subcorpus.

Table 3: Number of Dependencies Annotated.
method | 0.25 [h] | 0.5 [b] | 0.75 [h] | 1.0 [k]
r=0.33 226 458 710 1056
r=1.0 141 402 756 1018

in active learning.

From Table 3, we can see that the annotation speed
reaches a maximum of about 350 annotations per fifteen
minutes in the full annotation case, or 1.4k dependencies
per hour. For both methods, the average speed is around
1k dependencies per hour (as shown in the fourth col-
umn). Figure 4 uses these average speeds to estimate the
rate of annotation for the experiments from Section 4.1.
While this is not entirely realistic because annotation
speeds are likely to vary across domains, it is sufficient
to compare strategies within the same domain. In each
domain, we can see that accuracy improves at a faster
rate for partial annotation than it does for full annota-
tion. The gap between them is largest for the patent
domain and smallest for the journal domain.

5 Conclusions

We combined partial annotation with active learning to
adapt a Japanese dependency parser to new domains.
We showed that an entropy-based query strategy can
successfully identify units smaller than sentences, allow-
ing annotators to use partial annotation. This strategy
reduces the amount of in-domain training data that must
be labeled for domain adaptation by up to 75%. To more
accurately frame these results, we measured the anno-
tation time a human annotator took to prepare labeled
data using different strategies. While full and partial
annotation had similar speeds, partial annotation better
identified informative examples and delivered the most
in-domain accuracy improvements in terms of time spent
on annotation.

References

[1] D. Flannery, Y. Miyao, G. Neubig, and S. Mori. A point-
wise approach to training dependency parsers from par-
tially annotated corpora. Journal of Natural Language
Processing, 19(3), 2012.

[2] R. Hwa. Sample selection for statistical parsing. Compu-
tational Linguistics, 30(3), 2004.

[3] D. Lewis and W. Gale. A sequential algorithm for train-
ing text classifiers. In Proceedings of the 17th annual
ACM SIGIR conference on research and development in
mformation retrieval, 1994.

[4] K. Maekawa. Balanced corpus of contemporary written
Japanese. In Proceedings of the 6th Workshop on Asian
Language Resources, 2008.

[5] G. Neubig, Y. Nakata, and S. Mori. Pointwise prediction
for robust, adaptable Japanese morphological analysis. In
ACL-HLT 2011, 2011.

[6] F. Olsson. A literature survey of active machine learning
in the context of natural language processing. Technical
Report T2009:06, Swedish Institute of Computer Science,
2009.

[7] M. Sassano and S. Kurohashi. Using smaller constituents
rather than sentences in active learning for Japanese de-
pendency parsing. In ACL 2010, 2010.

[8] M. Tang, X. Luo, and S. Roukos. Active learning for
statistical natural language parsing. In ACL 2002, 2002.

