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Abstract

In this paper, we discuss language model adaptation methods given
a word list and a raw corpus. In this situation, the general method
is to segment the raw corpus automatically using a word list, cor-
rect the output sentences by hand, and build a model from the
segmented corpus. In this sentence-by-sentence error correction
method, however, the annotator encounters grammatically compli-
cated positions and this results in a decrease of productivity. In
this paper, we propose to concentrate on correcting the positions
in which the words in the list appear by taking a word as a cor-
rection unit. This method allows us to avoid these problems and
go directly to capturing the statistical behavior of specific words
in the application. In the experiments, we used a variety of meth-
ods for preparing a segmented corpus and compared the language
models by their speech recognition accuracies. The results showed
the advantages of our method.
Index Terms: language model adaptation, word list, raw corpus,
stochastic segmentation, speech recognition

1. Introduction
Many language models (LMs) are based on the frequencies of
words and word sequences counted in a corpus. In agglutinative
languages such as Japanese an LM requires a corpus with word
boundary information (a segmented corpus). A segmented corpus
is, however, available only for general domains. In most appli-
cations, such as a speech recognition system for medical records
or call center logs, a corpus without word boundary information
(a raw corpus) and a word list in the target domain are the only
available resources. In these situations, all of the sentences in the
raw corpus are first segmented into words by an automatic word
segmenter with the word list[1], then some of the output sentences
are corrected by hand, and finally the frequencies are counted in
the whole corpus.

The more the sentences are corrected by hand, the more reli-
able the statistics become, and the more the LM is improved. How-
ever manual error correction takes a lot of time and expense. Thus
in most cases only a small set of sentences is manually checked
and the rest are used as they are. In this sentence-by-sentence
error correction method, however, the annotator encounters gram-
matically complicated positions and this results in a decrease of the
annotator’s productivity. In addition, it is not certain that sentence-
by-sentence error correction from the beginning is the best way to
allocate a limited work force [2].

In this paper, we propose taking a word as a correction unit and
concentrate on correcting the positions in which words in the list
appear. This method allows us to avoid the difficulties mentioned
above and go directly to capturing the statistical behavior of spe-
cific words in the application field. The resulting corpus contains
sentences partially annotated with word boundary information. In

order to estimate word n-gram probabilities from such sentences,
we extend a method for estimating word n-gram probabilities of an
infinite vocabulary from a raw corpus [3] to a limited vocabulary
case.

In the experiments, we used a variety of methods for preparing
a segmented corpus and compared the language models from the
corpora in predictive power and speech recognition accuracy. The
results showed that concentrating on the error correction around
the words in the list, we can build a better language model with
less effort.

2. Language models and their applications
A stochastic LM M is a probability function for sequence of char-
acters x ∈ X ∗. The summation over all possible sequences of
characters must not be grater than 1. This probability function is
used for the likelihood in an NLP system.

2.1. Word n-gram model

The most widely known LM is an n-gram model based on words.
In this model, a sentence is regarded as a word sequence wh

1 (=
w1w2 · · ·wh) and words are predicted from beginning to end:

Mw,n(w) =

h+1∏
i=1

P (wi|wi−1
i−n+1),

where wi (i ≤ 0) and wh+1 is a special symbol called a BT

(boundary token). Since it is impossible to define the complete
vocabulary, we prepare a special token UW for unknown words
and an unknown word spelling xh′

1 is predicted by the following
character-based n-gram model when a UW is predicted by Mw,n:

Mx,n(xh′
1 ) =

h′+1∏
i=1

P (xi|xi−1
i−n+1), (1)

where xi (i ≤ 0) and xh′+1 is the special symbol BT. Thus, when
wi is outside of the vocabulary W ,

P (wi|wi−1
i−n+1) = Mx,n(wi)P (UW|wi−1

i−n+1).

2.2. Automatic word segmentation

Nagata [1] proposed a stochastic word segmenter based on a word
n-gram model to solve the word segmentation problem. According
to this method, the word segmenter divides a sentence x into a
word sequence with the highest probability

ŵ = argmax
w=x

Mw,n(w).

3. Language model adaptation with a word
list and a raw corpus

In this section, we propose a novel method for adapting an LM
assuming that a word list and a raw corpus in the target domain are
available.
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Figure 1: Word n-gram frequency in a stochastically segmented corpus (SSC).

3.1. Word n-gram probability estimation from a stochasti-
cally segmented corpus (SSC)

Generally speaking we need a corpus manually segmented into
word sequences to estimate an LM. An easily available raw corpus
lacks word boundary information. However there is a method for
estimating an LM from a raw corpus by regarding it as a stochasti-
cally segmented corpus (SSC) [3]. Below we explain this method
and extend it.

An SSC is defined as a combination of a raw corpus Cr (here-
after referred to as the character sequence xnr

1 ) and word boundary
probabilities Pi that a word boundary exists between two charac-
ters xi and xi+1. Given an SSC word n-gram frequencies are
calculated as follows:
Word 0-gram frequency: This is defined as an expected number

of words in the SSC:

f(·) = 1 +

nr−1∑
i=1

Pi.

Word n-gram frequency (n ≥ 1): Let us think of a situation
(see Figure 1) in which a word sequence wn

1 occurs in the SSC
as a subsequence beginning at the (i+1)-th character and ending
at the k-th character and each word wm in the word sequence is
equal to the character sequence beginning at the bm-th character
and ending at the em-th character (xem

bm
= wm, 1 ≤ ∀m ≤ n;

em + 1 = bm+1, 1 ≤ ∀m ≤ n − 1; b1 = i + 1; en = k). The
word n-gram frequency of a word sequence fr(w

n
1 ) in the SSC

is defined by the summation of the stochastic frequency at each
occurrence of the character sequence of the word sequence wn

1

over all of the occurrences in the SSC:

fr(w
n
1 ) =

∑
(i,en

1 )∈On

Pi

[
n∏

m=1

{
em−1∏
j=bm

(1 − Pj)

}
Pem

]
,

where en
1 = (e1, e2, · · · , en) and On = {(i, en

1 )|xem
bm

=
wm, 1 ≤ m ≤ n}.

Word n-gram probability: Similar to the word n-gram probabil-
ity estimation from a decisively segmented corpus, word n-gram
probabilities in the SSC are estimated by the maximum likeli-
hood estimation method as relative values of word n-gram fre-
quencies:

Pr(w) = fr(w)/fr(·),
Pr(wn|wn−1

1 ) = fr(w
n
1 )/fr(w

n−1
1 ) (n ≥ 2).

3.2. Word n-gram probability estimation from an SSC on a
limited vocabulary

In speech recognition, words in the vocabulary must be annotated
with their pronunciations. Thus in real applications, we need to es-
timate word n-gram probabilities on limited vocabularies includ-
ing the unknown word symbol.

For a segmented corpus, all the words outside of the vocabu-
lary Wk are replaced with the unknown word symbol UW and the

word n-gram frequencies are determined of considering UW as a
word. For an SSC, we can not follow this straight-forward strat-
egy. However, the following characteristics enable us to calculate
n-gram frequencies on the SSC1.⎧⎪⎪⎨
⎪⎪⎩

fr(wuUWwv) =
∑

w∈X+−Wk

fr(wuwwv)

∑
w∈X+

fr(wuwwv) =
∑

w∈X+−Wk

fr(wuwwv) +
∑

w∈Wk

fr(wuwwv)

⇒ fr(wuUWwv) =
∑

w∈X+

fr(wuwwv) −
∑

w∈Wk

fr(wuwwv), (2)

where wu, wv ∈ (Wk∪{UW})∗ are arbitrary sequences consisting
of words in the vocabulary Wk and UW.

Uni-gram frequency of UW. The uni-gram frequency of UW on the
SSC is calculated using the following relationship between word
uni-gram frequencies and the word zero-gram frequency

fr(·) =
∑

w∈X+

fr(w)

and the following equation obtained by letting wu = wv = ε (ε
represents a null string) in Equation (2)

fr(UW) =
∑

w∈X+

fr(w) −
∑

w∈Wk

fr(w).

Thus the word zero-gram frequency is as follows:

fr(UW) = fr(·) −
∑

w∈Wk

fr(w).

Word bi-gram frequency containing UW. The frequency with a
sequence of an arbitrary word w1 ∈ Wk and UW in the SSC
fr(w1UW) is calculated using the relationship between the word
bi-gram frequency and the word uni-gram frequencies

fr(w1) =
∑

w∈X+

fr(w1w), ∀w1 ∈ Wk ∪ {UW}

and the following equation obtained by letting wu = w1, wv =
ε in Equation (2)

fr(w1UW) =
∑

w∈X+

fr(w1w) −
∑

w∈Wk

fr(w1w).

Thus the word bi-gram frequency fr(w1UW) is calculated as fol-
lows:

fr(w1UW) = fr(w1) −
∑

w∈Wk

fr(w1w).

Similarly the frequency of a sequence of UW and an arbitrary word
w2 ∈ Wk in the SSC fr(w2UW) is calculated as follows:

fr(UWw2) = fr(w2) −
∑

w∈Wk

fr(ww2).

1More precisely, n-gram sequences containing multiple unknown word
symbols have to be considered. We are only describing n-gram sequences
containing only one unknown word symbol for simplicity in this paper.



エコノミスト、キャ サリン ・カミリさんなどは
ム・デーヴィッド・ サリン ジャーは 20世紀アメ

○ ぐおぞましい地下鉄 サリン 事件、長い不況に追
○ 始まった中川被告は サリン 生成を認めながら「
いるのを知りながら サリン 流出を阻止する義務

Figure 2: An example of corpus annotation by KWIC.

In addition, the word bi-gram frequency of a two UW sequence
fr(UW UW) is calculated using

fr(·) =
∑

w1∈X+

∑
w2∈X+

fr(w1w2)

as follows:

fr(UW UW) = fr(·) −
∑

w1∈Wk

fr(w1UW) −
∑

w2∈Wk

fr(UWw2)

−
∑

(w1w2)∈Wk×Wk

fr(w1w2).

Word n-gram frequency containing UW (n ≥ 3). Frequencies
of an n word sequence containing one or more than one UWs are
also calculated in the same way as the bi-gram case.

Word n-gram probability containing UW (n ≥ 1). Same in the
case of normal word n-gram probabilities, word n-gram proba-
bilities containing UW are estimated by dividing the word n-gram
frequency by the word (n − 1)-gram frequency.

Now we can estimate word n-gram probabilities on a limited vo-
cabulary with the unknown word symbol in an SSC

4. Usage of a raw corpus
A raw corpus in the target domain is important to capture the lin-
guistic characteristics in the application field. There are three ways
to use the raw corpus.
1. Unknown word extraction

Word candidates are extracted from the raw corpus based on a
criterion such as an accessor variety [4]. The extracted words are
manually checked and annotated with their pronunciations.

2. Automatically segmented corpus
Word n-gram frequencies are counted in the automatic segmen-
tation results of the raw corpus. Although the automatic word
segmenter [1] has a tendency to make mistakes around specific
words in the target domain, this method is practical and widely
adopted.

3. Manually segmented corpus
In the ideal situation in which all the sentences in the raw corpus
in the target domain are correctly segmented, the performance of
the LM is as high as possible.

The more the sentences an annotator corrects, the more the
LM is improved. In practice, however, the corpus correction re-
quires a large amount of time and expense. Thus only some of
the sentences are corrected and the other automatically segmented
sentences are used as they stand. We encounter here the question
of whether this sentence-by-sentence correction is the best way for
allocating a limited workforce.

To correct word segmentation errors means to add proper word
boundary information. The smallest unit of word boundary infor-
mation is the existence or absence of a word boundary between
each two characters. A sentence-by-sentence correction, however,
obliges the annotator to make decisions on all of the points in a

Table 1: Corpora.

usage domain #chars #words #sents
learning conversation 14,754 187,658 254,436
learning newspaper 20,700 625,761 917,830

test conversation 1,639 21,105 28,655
test newspaper 2,300 68,566 100,091

sentence. In contrast we propose to consider each word as a cor-
rection unit and concentrate on correcting the positions in which
the words in the list appear. Concretely speaking, as shown in Fig-
ure 2, the annotator sees a KWIC (Key Word In Context) for a
word (ex. サリン) in the list with contexts and marks the occur-
rences if the string in question is used as a word in that context or
does nothing. It is better to limiting the number of marks for each
word. This limitation prevents the annotator from spending time
on linguistically complicated points.

5. Evaluation
As an evaluation of our corpus correction framework, we mea-
sured the predictive powers of LMs built from segmented corpora
of various correction frameworks and the character error rates of a
pseudo-recognition task whose input is a phoneme-sequence, not
a voice signal. In this section we show the results and evaluate our
new framework.

5.1. Conditions for the Experiments

The corpus in the general domain used in our experiments is com-
posed of example sentences in a dictionary of daily conversation.
The corpus in the target domain is composed of articles extracted
from newspapers (see Table 1). Both corpora were segmented into
words manually. The corpus in the target domain is, however,
mainly used as a raw corpus. Its word boundary information is
used to simulate an ideal situation in which we have a correctly
segmented corpus in the target domain. The word list in the tar-
get domain contains 21,855 words appearing in the target domain
corpus.

The baseline LM is built as follows:

Base. We built a word bi-gram model form the segmented corpus
in the general domain. The vocabulary contains 5,112 words.
The generation probabilities of the words in the word list are in-
creased slightly by distributing the summation of the generation
probabilities of the known words [5]. The target domain corpus
is not used.

The test set perplexity of the LM on the test corpus in the gen-
eral domain was 64.28. The automatic word segmenter used in
the experiments is based on the baseline LM and returns the word
sequence with the highest probability (see Subsection 2.2). The
word boundary estimation accuracy on the test corpus in the gen-
eral domain was 98.26% 2.

In the experiments described below, we adopted the word
boundary probability estimation method described in [3]. That is,
the raw corpus is segmented by the word segmenter and Pi is set to
be the word boundary estimation accuracy (α = 98.26%) for each
i where the word segmenter put a word boundary and Pi is set to
1 − α for each i where it did not put a word boundary.

2The word boundary estimation accuracy on the test corpus in the target
domain was 89.25%.



Table 2: Predictive powers and character error rates (CER) of each
model.

Model The raw corpus usage PP CER
Base – 1938 37.26%
Auto Automatic segmentation 755.7 19.48%
Raw Stochastic segmentation 536.5 15.30%
Rare Partial correction 465.2 13.43%

Medium Partial correction 364.2 11.66%
45%-done Partial correction 427.4 13.44%
Well-done Complete correction 353.1 11.10%

5.2. Usages of the raw corpus in the target domain

In order to compare the usages of the raw corpus in the target do-
main, we prepared the following six methods changing the strategy
or the amount of manual error correction.
Auto. The target domain corpus is automatically segmented. This

is equivalent to a stochastically segmented corpus in which Pi =
1 at the points where the word segmenter put a word boundary
and Pi = 0 at the points where the word segmenter did not put a
word boundary.

Raw. The target domain corpus is stochastically segmented. That
is, Pi = α at the points where the word segmenter put a word
boundary and Pi = 1−α at the points where the word segmenter
did not put a word boundary.

Well-done. The target domain corpus is manually segmented and
used as a decisively segmented corpus as in Auto.

45%-done. The target domain corpus is manually segmented
from the beginning to the 281,398-th word (45.00%) and the rest
is automatically segmented. The whole corpus is used as a deci-
sively segmented corpus as in Auto.

Medium. First, word boundary probabilities are set in the same
way as Raw. Then at each point where a word in the word list
appears, the word boundary probabilities before the word and af-
ter the word are set to be 1 and the word boundary probabilities
inside of the character sequence of the word are set to be 0. This
corresponds to the annotation strategy in which a corpus annota-
tor checks the KWIC of the strings in the word list and marks the
occurrences of the strings as the word. The number of checked
words was 138,483 (22.13%).

Rare. First, word boundary probabilities are set in the same way
as Raw. Then at two points for each word where the word in
the word list appears, the word boundary probabilities before the
word and after the word are set to be 1 and the word boundary
probabilities inside of the character sequence of the word are set
to be 0. This corresponds to the annotation strategy in which a
corpus annotator checks the KWIC of the strings in the word list
and marks two occurrences of a string as a word. The number of
marked words was 32,643 (5.22%).

We estimated word uni-gram probabilities and word bi-gram prob-
abilities from the target domain corpus with word boundary infor-
mation obtained by these methods on the vocabulary containing
the Base model vocabulary words and the words in the word list.
Then we interpolated the above LMs with the Base model to obtain
final LMs.

5.3. Evaluation

Table 2 shows the predictive powers and the character error rates
(CER) of the models. The comparison of Base with Auto and
Raw, which do not require an error correction work, shows that

it is good to gather as many sentences as possible in the target
domain. The better usage is Raw in which we do not completely
rely on the automatic segmentation results.

The predictive powers and the CER of Raw are much worse
than those of Well-done, which requires manual annotation. It
follows that it is worthwhile to annotate the raw corpus with word
boundary information.

In contrast to sentences that are segmented manually one by
one normally, in Rare and Medium the annotator only checks
parts of the sentences. In Rare, in which the annotator checks
only two occurrences, at least for each word in the word list, only
5.22% of the word occurrences are checked, but the CER is almost
the same as that of 45%-done. The CER of Medium, in which
the annotator checks all of the occurrences of the strings of the
listed words, is almost the same as that of Well-done, in which
all of the sentences are segmented manually. This result tells us
that by using our method we can achieve a comparable accuracy
by checking only about 22.13% of the words.

Although the cost to correct boundary information of a word
is not necessarily equal in sentence-by-sentence correction and
KWIC-based correction, the number of words to be checked in
Rare is nine times fewer than in 45%-done. Thus we can say that
the total cost in Rare is less than that in 45%-done. In addition,
the sentence-by-sentence error correction includes grammatically
complicated points to correct properly, even for grammar experts,
such as function word sequences, etc. In contrast, the KWIC-based
error correction allows an annotator to avoid this kind of difficulty
and to concentrate on correcting the positions in which specific
words in the application field appear. From the above observa-
tions, we conclude that the KWIC-based error correction strategy
combined with the notion of an SSC enables us to develop an LM
suitable for target applications with a lower cost and in a shorter
shorter time.

6. Conclusion
In this paper we compared usages of the raw corpus in the target
domain for an LM adaptation assuming that two resources in the
target domain are available: a raw corpus and a word list. The
comparisons of the predictive powers and the recognition accura-
cies showed that we can effectively improve the performance of an
LM in the taget domain by concentrating the costly error correc-
tion effort on the points where the words in the given list occur.
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